MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability

  • 양서민 (광운대학교 컴퓨터공학과) ;
  • 이혁준 (광운대학교 컴퓨터공학과)
  • Yang, Seo-Min (Dept.of Computer Engineering, Kwangwoon University) ;
  • Lee, Hyeok-Jun (Dept.of Computer Engineering, Kwangwoon University)
  • 발행 : 1999.10.01

초록

셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

키워드

참고문헌

  1. IEEE Trans. Veh. Technol. v.VT-26 no.4 Radio propagation for vehicular communications K. Bullington
  2. Rev. Elec. Common. Lab. v.16 Field strength and its variability in VHF and UHF land-mobile radio service Y. Okumura(et al.)
  3. IEEE Trans. Veh. Technol. v.VT-29 no.3 Empirical formula for propagation loss propagation loss in land mobile radio services M. Hata
  4. IEEE Trans. Antennas and Prop. v.36 A theoretical model of UHF propagation in urban environments J. Walfish;H. L. Bertoni
  5. IEEE Trans. Antennas and Prop. v.39 Theoretical prediction of mean field strength for urban mobile radio F. Ikegami;T. Takeuchi;S. Yoshida
  6. IEEE Globecom '92 A ray tracing technique to predict path loss and delay spread inside buildings S.Y. Seidel;T.S. Rappaport
  7. IEEE Trans. Veh. Technol. Conf. A ray tracing approach to predicting indoor wireless transmission R.A. Valenzuela
  8. Journal of the Optical Society of America v.52 no.2 Geometrical theory of diffraction J. B. Keller
  9. IEEE Journal on Selected Area in Communications v.11 no.7 Concepts and results for 3D digital terrain-based wave propagation models: an overview T. Krner;D. J. Cichon;W. Wisebeck
  10. IEEE Proc. H. v.140 no.4 Neural network approach to prediction of terrestrial wave propagation for mobile radio K. E. Stocker(et al.)
  11. IEEE Trans. Veh. Technol. v.46 no.1 Environment-adaptation mobile radio propagation prediction using radial basis function neural network P. R. Chang;W. H. Yang
  12. Neural Networks v.2 Multi-layer feedforward networks are universal approximators K. Hornick;M. Stinchcombe;H White
  13. IEICE Trans. v.E 74 no.6 Base and mobile station antennas for land mobile radio system Y. Yamada;Y. Ebine;K. Tsunekawa