Abstract
본 논문에서는 비디오 데이타를 분석하여 다양한 카메라의 동작을 정량적으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 카메라의 동작 추출 방법은 어파인 모델을 이용한 방법으로 인접 영상으로부터 추출한 동작 벡터를 어파인 모델에 적용하고 회귀분석법을 통해 어파인 모델을 구성하는 파라미터를 구한다. 그런 다음, 파라미터들의 크기를 분석하고 상호 관계를 해석하여 카메라의 동작을 추출한다. 본 논문에서는 잡음이 포함된 동작 벡터를 필터링하여 사용하므로 잡음에 강건한 결과를 얻을 수 있다. 그리고 어파인 모델을 구성하는 파라미터만을 분석함으로써 카메라의 다양한 동작을 간단하면서도 비교적 정확하게 추출한다. 실험 결과는 카메라의 동작을 정확하게 추출하고 있음을 보여준다.Abstract This paper presents an elegant method, an affine-model based approach, that can qualitatively estimate the information of camera motion. We define various types of camera motion by means of parameters of an affine-model. To get those parameters from images, we fit an affine-model to the field of instantaneous velocities, rather than raw images. We correlate consecutive images to get instantaneous velocities. The size filtering of the velocities are applied to remove noisy components, and the regression approach is employed for the fitting procedure. The fitted values of the parameters are examined to get the estimates of camera motion. The experimental results show that the suggested approach can yield the qualitative information of camera motion successfully.