Development of Novel Materials for Reduction of Greenhouse Gases and Environmental Monitoring Through Interface Engineering

  • Hirano, Shin-Ichi (Department of Applied Chemistury, Nagoya University) ;
  • Gang, Seok-Jung L. (Center for Inter face Science and Engineering of Materials, Korea Advanced Institute of Science and Technology) ;
  • Nowotny, Janusz-Nowotny (Centre for Materials Research inEnergy Conversion, School of Materials Science and ENgineering, The University of New Wouth Walss) ;
  • Smart, Roger-St.C.Smart (Ian Work Research Institute, The Wniversity of South Australia) ;
  • Scrrell, Charles-C.Sorrell (School of Materials Science and Ceramic Technology, The University of New South Wales) ;
  • Sugihara, Sunao (Department of Materials Science and Ceramic Technology, Shoman Institute of Technology) ;
  • Taniguchi, Tomihiroi (Department of Quantum Engineering and Systems Sciemce, Tokyo University) ;
  • Yamawaki, Michio (Department of Quantum Engineering and Systems Sciemce, Tokyo University) ;
  • Yoo (School of Materials Science and Engineering,Seoul National University)
  • Published : 1999.06.01

Abstract

The present work considers work considers research strategies to address global warming. Specifically, this work considers the development of technologies of importance for the reduction of greenhouse gas emission and, especially, the materials that are critical to these technologies. It is argued that novel materials that are essential for the production of environmentally friendly energy may be developed through a special kind of engineering: interface engineering, rather than through classical bulk chemistry. Progress on the interface engineering requires to increase the present state of understanding on the local properties of materials interfaces and interfaces processes. This, consequently, requires coordinated international efforts in order to establish a strong background in the science of materials interfaces. This paper considers the impact of interfaces, such as surfaces and grain boundaries, on the functional properties of materials. This work provides evidence that interfaces exhibit outstanding properties that are not displayed by the bulk phase. It is shown that the local interface chemistry and structure and entirely different than those of the bulk phase. In consequence the transport of both charge and matter along and across interfaces, that is so important for energy conversion, is different than that in the bulk. Despite that the thickness of interfaces is of an order to a nanometer, their impact on materials properties is substantial and, in many cases, controlling. This leads to the conclusion that the development of novel materials with desired properties for specific industrial applications will be possible through controlled interface chemistry. Specifically, this will concern materials of importance for energy conversion and environmental monitoring. Therefore, there is a need to increase the present state of understanding of the local properties of materials interfaces and the relationship between interfaces and the functional properties of materials. In order to accomplish this task coordinated international efforts of specialized research centres are required. These efforts are specifically urgent regarding the development of materials of importance for the reduction of greenhouse gases. Success of research in this area depends critically on financial support that can be provided for projects on materials of importance for a sustainable environment, and these must be considered priorities for all of the global economies. The authors of the present work represent an international research group economies. The authors of the present work represent an international research group that has entered into a collaboration on the development of the materials that are critical for the reduction of greenhouse gas emissions.

Keywords

References

  1. Climate Change T. A kiyama
  2. V. Ponec, Surf. Sci. v.68 F.J. Kuijvers
  3. Proceedings of NATO Summer School Surfaces and Interfaces of Ceramics L.C. Dufour(ed.);C. Monty(ed.);G. Petot-Ervas(ed.)
  4. Surface and Near-Surface Chemistry of Oxide Materials J. Nowotny(ed.);L.C. Dufour(ed.)
  5. Science of Ceramic Interfaces J. Nowotny(ed.)
  6. Science of Ceramic InterfacesⅡ J. Nowotny(ed.)
  7. Interfaces of Ceramic Materials K. Uematsu(ed.);Y. Moriyoshi(ed.);Y. Saiio(ed.);J. Nowotny(ed.)
  8. J. Appl. Crystal. v.12 F. Fivet;P. Germi;F. Bergevin;M. Figlarz
  9. Nonstoichiometric Compounds J. Nowotny;M. Sloma;W. Weppner;J. Nowotny(ed.);W. Weppner(ed.)
  10. J. Am. Ceram. Soc. v.77 no.12 The Effect of Particle Size on the Room Temperature Structure of Barium Titanate B.D. Begg;E.R. Vance;J. Nowotny
  11. J. Am. Ceram. Soc. v.72 K. Uchino;E. Sadanaga;T. Hirose
  12. Surfaces and Interfaces of Ceramic Materials J.C. Niepce;L.C. Dufour(ed.);C. Monty(ed.);G. Petot_Ervas(ed.)
  13. Phil. Mag. A v.50 D.M. Duffy;P.W. Tasker
  14. Proceedings of International Conference on Ceramic Microstructure R.W. Carpenter;W. Braue;A.P. Tomsia(ed.);A.M. Glaeser(ed.)
  15. J. Mater. Sci. Lett. v.15 X. Guo
  16. Bull. Acad. Sci. Polon., Ser. Sci. Chim. v.39 W. Hirschwald;B. Loechel;J. Nowotny;J. Oblakowski;I. Sikora
  17. Appl. Surf. Sci. v.17 J. Haber;J. Nowotny;I. Sikora;J. Stoch.
  18. J. Mater Res. v.48 R.C. McCune
  19. J. Am. Ceram. Soc. v.62 J.R. Black;W.D. Kingery
  20. J. Am. Ceram. Soc. v.71 S.M. Mukhopadhyay;A.P. Jardine;J.M. Blakely;S. Baik
  21. Solid State Ionics v.12 J. Nowothy;M. Rekas
  22. Fundamentals of Grain and Interface Boundary Diffusion I. Kaur;W. Gust
  23. Phil. Mag. A. v.43 A. Atkinson;R.I. Taylor
  24. J. Phys. Chem. Solids v.57 K. Kowalski;E.G. Moya;J. Nowotny
  25. in ref. 3 M. Deschamps;F. Barbier
  26. in ref. 4 E.G. Moya
  27. Solid State Ionics v.111 M. Matsuda;J. Nowotny;Z. Zhang;C.C. Sorrell
  28. in ref. 3 R.G. Egdell;S.C. Parker
  29. in ref. 2 D. Hennings
  30. Materials Forum v.21 S.P.S. Badwal;F. Foger
  31. Key Eng. Mater. v.125-126 T. Kawada;H. Yokokawa
  32. J. Ceram. Soc. Jap. v.103 K. Yamana;S. Nakamura;J. Nowotny;Z. Zhang;F. Terasaki
  33. J. Electrochem. Soc. v.123 J. Foultier;P. Fabry;M. Kleitz
  34. J. Electrochem. Soc. v.134 E.J.L. Schouler;M. Kleitz
  35. J. Electrochem. Soc. v.142 P. Han;W.L. Worrell
  36. J. Am. Ceram. Soc. v.81 J. Nowotny;M. Rekas
  37. J. Electrochem. Soc. v.142 K.E. Swider;W.L. Worrell
  38. Science and Technology of Zirconia A. Kopp;H. Naefe;W. Weppner;P. Kountouros;H. Schubert;S.P.S. Badwal(ed.);M.J. Bannister(ed.);R.H.J. Hannink(ed.)
  39. Ph.D. thesis,Twente University D. Scholten
  40. Solid State Ionics v.28-30 W.L. Worrell
  41. Ph.D. thesis, Twente University B.A. van Hassel
  42. Z. Nafurf. v.31a W. Weppner
  43. Goldschmidt Inform v.2 W. Weppner
  44. J. Electrochem. Soc. v.136 J.-H. Park;R.N. Blumenthal
  45. Zirconia Engineering Ceramics J. Nowotny;M. Rekas;T. Bak;E. Kisi(ed.)
  46. in ref. 5 F. Cabane;J. Cabana
  47. Grain Boundaries in Metals D. McLean
  48. in ref. 4 P. Wynblatt;R.C. McCune
  49. J. Phys. Chem. Solids v.44 A.J.A. Winnubst;P.J.M. Kroot;A.J. Burggraaf
  50. Materials Science Monographs v.28 A.J. Burggraaf;M. Van Hemert;D. Scholten;A.J.A. Winnubst;P. Barret(ed.);L.C. Dufour(ed.)
  51. J. Mater. Sci. Lett. v.8 G.S.A.M. Theunissen;A.J.A. Winnubst;A.J. Burggraaf
  52. Appl. Surface Sci. v.25 K.O. Axelsson;P.J.M. Keck;B. Kasemo
  53. Ph.D. Thesis, Royal Melbourne Institute of Technology A.E. Hughes
  54. J. Am. Ceram. Soc. v.78 A.E. Hughes
  55. in ref. 6 A.E. Hughes
  56. Solid State Ionics v.46 A.E. Hughes;S.P.S. Badwal
  57. J. Europ. Ceram. Soc. v.10 A.E. Hughes;S.P.S. Badwal
  58. Ceramic Interfaces Ⅳ J. Nowotny;N. Mizutani;S.J.L. Kang(ed.);H.I. Yoo(ed.)
  59. Nature v.37 A. Fujishima;K. Honda
  60. Dev. Chem. Eng. Mineral Process. v.6 R.F. Howe
  61. Chem. Commun. v.20 S. Ikeda;T. Takata;T. Kondo;G. Hitoki;M. Hara;J.N. Kondo;K. Domen;H. Hosono;H. Kawazoe;A. Tanaka
  62. Surface and Near-Surface Chemistry of Oxide Materials J. Nowotny(ed.);L.C. Dufour(ed.)
  63. J. Chim. Phys. v.75 J. Nowotny
  64. Getting Auto Exhaust, Science/Technology v.25 M. Jacoby
  65. J. Am. Ceram. Soc. v.82 Gas Sensing Properties of Thin Films S. Arakawa;K. Mogi;K. Kikuta;T. Yogo;S.-I. Hirano
  66. J. Mater. Sci. T. Yamaguchi;W. Sakamoto;T. Yogo;T. Fujii;S.-I. Hirano
  67. Solar Cells M.A. Green
  68. J. Sol-Gel Science and Technology v.2 M. Gratzel
  69. Aust. J. Chem. v.47 D. Matthews;A. Kay;M. Gravel
  70. Intern. Symp. on New Nuclear Technologies Global 97 M. Yamawaki;H. Suwarno;T. Yamamoto;F. Ono;K. Yamaguchi;H. Kayano
  71. Thermoelectric Phenomena D.D. Pollock
  72. in ref. 4 J. Nowotny;M. Rekas;D.D. Sarma;W. Weppner
  73. J. Electrochem. Soc. v.124 M. Gauthier;A. Chamberland
  74. J. Electroceramics v.2-4 N. Yamazoe;N. Miura
  75. Cost-Effective Strategies for an Optimal Intertemporal Allocation of Carbon Dioxide Emission Reduction Measures P. Russ
  76. Ceramic Interfaces R. St. C. Smart;J. Nowotny;R. St. C. Smart(ed.);J. Nowotny(ed.)
  77. Solid State Ionics v.108 Y. Hanajiri;T. Matsui;Y. Arita;T. Nagasaki;H. Shigematsu;T. Harami
  78. Electrical Properties of Oxide Materials S.P. Jiang;J.G. Love;S.P.S. Badwal;J. Nowotny(ed.);C.C. Sorrell(ed.)
  79. in ref. 76 A.R. Gerson;R.St.C. Smart