Synthesis and Their Catalytic Performance on Microporous Materials(CHA, ERI and MTT types)

마이크로다공성재료의 합성과 촉매적성능 (CHA, ERI, and MTT types)

  • Kang, Mi-Sook (Dept. of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Park, Jong-Yul (Dept. of Chemistry, Pusan National University.) ;
  • Um, Myeong-Heon (Dept. of Industrial Chemistry, Cheonan National Technical College)
  • 강미숙 (일본 경도대학교 물질에너지학과) ;
  • 박종열 (부산대학교 화학과) ;
  • 엄명헌 (국립천안공업대학 공업화학과)
  • Published : 1999.02.01

Abstract

This work was focused on the synthesis and their catalytic performance on microporous materials having various pore types and dimensions in structures, such as the SAPO-34 and the SAPO-44 with CHA type, the SAPO-17 with ERI type of three dimensional structures, and the ZSM-23 with MTT type of one dimensional structure. Synthesized materials exhibited various acidities and the selectivities to olefin in methanol conversion. As a result, the order of their acid strength was as follows; SAPO-44>SAPO-34>SAPO-17>ZSM-5. On the other hand, the CHA type materials, such as SAPO-34 and SAPO-44, had high selectivity to light olefins(ethylene or propylene), and ZSM-23 with MTT typ of one dimensional structure showed high selectivity to paraffins over $\textrm{C}_{5}$~. This result is a proof that the structure in material had strong influence on catalytic performance. In addition, a surprising result is that the catalytic selectivity to ethylene enhanced on Ni-corporated materials compared with the non-corporated.

삼차원적 골격구조를 가지며 세공의 크기와 산성도가 유사한 SAPO-44, SAPO-34(CHA type), SAPO-17(ERI type), 그리고 1차원적 고격구조를 가진 ZSM-23(MTT type) 촉매재료를 합성하고, 메탄올 전환방응에 있어서의 촉매적 성능을 비교 검토하였다. 이들의 산성도 세기는 SAPO-44>SAPO-34>SAPO-17>ZSM-23 순으로 나타났다. 메탄올 전환반응을 비교한 결과, 삼차원적 골격구조를 가지고 있는 SAPO-34와 SAPO-44에서 높은 에티렌 선택성이 얻어졌으며, 특히 Ni을 골격내에 도입시켰을 때 그 선택율은 더욱 증가하였다. 반면에 1차원적 골격구조를 가지고 있는 ZSM-23에서는 입체적 형상선택성의 감소로 올레핀보다는 파라핀의 선택율이 우세하였다.

Keywords

References

  1. Zeolite Molecular Sieves, Structure, Chemistry and use D.W.Breck
  2. Molecular Sieves, Principle of synthe-sis and identification R.Szostak
  3. Zeolite Catalysis, Principle and applications S.Bhatia
  4. Stud. Surf. Sci. Catal. v.58 E.M.Flanigen
  5. U.S. Pat.4440871 B.M.Lok;C.A.Messina;R.L.Patton;R.T.Gajek;T.R.Cannan;E.M.Flanigen
  6. J. Am. Chem. Soc. v.104 S.T.Wilson;B.M.Lok;C.A.Messina;T.R.Cannon;E.M.Flanigen
  7. Proc. 6th. Intern. Zeol. Conf., Reno,1983 S.T.Wilson;B.M.Lok;C.A.Messina;E.M.Flanigen
  8. J. Am. Chem. Soc. v.106 B.M.Lok.;C.A.Messina;R.L.Patten;R.T.Gajek;T.R.Cannan;E.M.Flanigen
  9. Stud. Surf. Sci. Catal. v.28 E.M.Flanigen;B.M.Lok;R.L.Patton;S.T.Wilson
  10. Stud. Surf. Sci. Catal. v.58 S.T.Wilson
  11. Chem. Mater. v.3 J.M.Thomas;Y.Xu;C.R.A.Catkow;J.W.Coaves
  12. J. Chem. Soc., Chem. Commun. T.Inui;S.Phatanasri;H.Matsuda
  13. Appl. Catal., A:Genetal v.164 T,Inui;M.Kang
  14. ACS Symp. Series v.398 T.Inui
  15. Catal. Rev.-Sci. Eng. v.25 C.D.Chang