Characteristics of a Microstrip Circularly-Polarized Aperture-Patch $8\times8$ Array Antenna

마이크로스트립 원형 편파 개구면-패치 $8\times8$ 배열 안테나의 특성

  • 김인광 (현대전자산업주식회사 통신연구소) ;
  • 박위상 (포항공과대학교 전자전기공학과, 전자파특화연구센터)
  • Published : 1999.12.01

Abstract

The radiation characteristics of a microstrip circularly-polarized aperture-patch $8\times8$ array antenna are investigated at X-band. The radiator consists of a truncated square aperture on the ground plane with an inclined rectangular patch inside, and it is coupled by a microstrip line on the opposite side of the ground. The element spacing of the array was chosen as $0.8\lambda_0$so as to minimize the mutual coupling and maximize the gain. A corporate feed network was employed to distribute the power to each element through four Wilkinson and two T-junction dividers. Measurement results for the $8\times8$ array at 10 GHz showed a directivity of 26.3 dBi, a gain of 22.2 dBi, an axial ratio of 2.97 dB, and a side lobe level of -12.7dB. It was observed that when the array size increases, the directivity increases while the efficiency decreases.

X 대역에서 동작하는 마이크로스트립 원형 편파 개구연-패치 $8\times8$ 배열 안테나의 방사 특성에 대한 연구가 수행되었다. 복사 소자는 접지변에 모서리가 잘린 정사각형 개구면과 그 안에 기울어진 패치로 구성했고, 접지변 의 반대편에서 마이크로스트립 라인으로 coupling 시켰다. 상호결합을 최소화 하고, gam을 최대화 하기 위하여 소자 간의 간격은 $0.8\lambda_0$로 선택하였다. 급전구조는 병렬 형태로 구성하여 각 소자에 4개의 Wilkinson 분배기와 2개의 T - junction 분배기를 거쳐 전력을 공급한다. $8\times8$ 배열 안테나를 lOGHz에서 측정한 결과directivity는 26.3 d dBi, gain은 22.2 dBi, axial ratio는 2.97 dB, side lobe level은 12.7 dB로 나타났다. 배열의 크기가 커짐에 따라 d directivity는 증가하는 반면 효율은 감소하는 것을 확인하였다.

Keywords

References

  1. Proc. IEEE v.80 no.1 Antenna Array Architecture Robert J. Mailloux
  2. IEEE Tran. Antennas Propagat. v.AP-29 no.1 Microstrip Array Technology Robert J. Mailloux;John F. Mcilvenna;Nicholas P. Kernweis
  3. Proc. IEE v.135 Coplanar corporate feed effects in microstrip patch array design P. S. Hall;C. M. Hall
  4. IEEE Trans. Antennas Propagat. v.AP-37 no.4 A Study of Microstrip Array Antennas with the Feed Network Ely Levine;Gabi Malamud;Shmuel Shtrikman;David Treves
  5. IEEE Trans. Antennas Propagat. v.AP-43 no.1 A Ka-Band Circularly Polarized High-Gain Microstrip Array Antenna John Huang
  6. IEEE Trans. Antennas Propagat. v.AP-31 no.1 A Modular Approach for the Design of Microstrip Array Antennas J. Ashkenazy;P. Perlmutter;David Treves
  7. IEEE Trans. Antennas Propagat. v.AP-29 no.1 Measured Mutual Coupling Between Microstrip Antennas R. P. Jedlicka;M. T. Poe;K. R. Carver
  8. Advances in Microstrip and Printed Antennas Kai Fong Lee;Wei Chen
  9. Broadband Patch Antennas Jean-Francois Zurcher;Fred E. Gardiol
  10. IEEE Trans. Antennas Propagat. v.AP-31 no.6 Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antennas P. C. Sharma;Kuldip C. Gupta
  11. IEEE Trans. Antennas Propagat. v.AP-41 no.2 Design of Wideband Circularly Polarized Aperture-Coupled Microstrip Antennas Stephen D. Targonski;David M. Pozar
  12. Electron. Lett. v.23 no.23 Dual Aperture-Coupled microstrip Antenna for Dual or Circular Polarization A. Adrian;D. H. Schaubert
  13. IEICE Trans. v.E-74 no.10 A Circularly Polarized Slot-Coupled Microstrip Antenna Using a Parasitically Excited Slot Hiroki Shoki;Kazuaki Kawabata;Hisao Iwasaki
  14. IRE Trans. on Microwave Theory and Techniques v.MTT-8 An N-way Hybrid Power Divider E. Wilkinson
  15. Antenna Theory Analysis and Design Constantine A. Balanis
  16. IEEE Antenna Propagat. Soc. Int. Symp. Dig. Microstripline-fed Circularly-polarized Aperture Antenna The Nan Chang;Chung-Pei Wu
  17. Microwave journal CAD/CAE Design of an Improved, Wideband Wilkinson power Divider C. Q. Li;S. H. Li;R. G. Bosisio
  18. Advanced Engineering Electromagnetics Constantine A. Balanis
  19. Electron. Lett. v.123 Feed Radiation Effect in Sequentially Rotated Microstrip Patch Hall, P. S.
  20. Proc. ISAP 85 Wideband Circularly Polarized Array with Sequential Rotation and Phase Shift of Elements Teshirogi, T.;Tanaka, M.;Chujo, W.