Abstract
The method of moments, a Lagrangian scheme, considers the zeroth, first, and second moments of the grid cell spatial distributions of the concentration and then advects the concentration by maintaining conservation of the moments. The reasonable inital description of the first and second moments as well as the mean concentration, the zeroth moments, in grid element is important in the method of moments. In this study, the description methods of each initial moment are reviewed, and the method of moments is extended to overcome the restrictions of Courant number. Its performance is compared with those of available Eulerian and Lagrangian schemes. As the results, the method is successfully extended to overcome the stability restriction and is an accurate scheme for the advection simulation of concentration distribution, especially of which the gradient is steep. In addition, the method is very promising scheme in terms of computational efficiency when the mixing is confined in a relatively small region to the entire domain in two-dimensional problem.
모멘트법은 Lagrangian 벙법으로서 격자요소 내에서의 농도의 공간분포에 대한 0차, 1차, 2차 모멘트를 고려한고 각 모멘트의 보존성을 유지하면서 농도분포의 이송을 계산하는 방법이다. 따라 각 격자요소에서의 0차 모멘트, 즉 평균농도 뿐만 아니라 1차 및 2차 모멘트 값의 합리적인 초기 설정이 요구된다. 본 연구에서는 각 모멘트들의 초기값 설정방법을 검토하고, 기존 모멘트법의 Couuant 수에 대한 제약조건을 극복하기 위하여 모멘트법을 개선하였다. 모멘트법에 의한 모의 결과를 유용한 Eulerian 및 Lagrangian 기법에 의한 모의 결과와 비교 검토하여 모한 해석결과를 발생시키는 기법이며, 본 연구에서 제시한 Courant 수 제약조건의 극복에 관한 연구는 성공적으로 이루어진 것으로 나타났다. 한편, 모멘트법은 농도가 전체 계산영역의 일부에 분포하는 2차원 영역에서의 이송 모의시 계산시간에 있어서 매우 효율적인 것으로 나타났다.