Micro Fourier Rheometer에 의한 알루미나 그린 테이프의 Complex Modulus 측정

Complex Modulus of Alumina Green Tapes Measured by Micro Fourier Rheometer

  • 이정훈 (연세대학교 세라믹학과) ;
  • 이명현 (한국과학기술연구원 세라믹스연구부) ;
  • 김창은 (연세대학교 세라믹공학과) ;
  • 김대준 (한국과학기술연구원 세라믹스연구부) ;
  • ;
  • 발행 : 1999.02.01

초록

알루미나 분말/(알루미나+결합체+가소제)의 비(X)와 결합체/(결합체+가소제)의 비(Y)를 각각 변화시켜 제조한 알루미나 그린 테이프의 complex modulus를 Micro Fourier Rheometer를 이용하여 측정하였다. X와 Y의 증가에 따라 Transfer function(TF) magnitude는 증가하고 Transfer function(TF) phase는 감소하는 경향을 보였으며 이로부터 X비와 Y비의 증가가 테이프의 탄성을 증가시켜는 요인임을 알 수 있었다. 온도가 증가함에 따라 알루미나 테이프의 TF magnitude는 작아지고 TF phase는 커지는 것으로부터 테이프의 점성이 증가함을 알 수 있었다. 특히 Y비에 따른 complex modulus의 변화는 유리전이온도와 관련이 있으며 변화값은 측정 조성 범위 내에서 X비에 의한 변화값보다 큼을 볼 수 있었다. complex modulus 측정을 통하여 알루미나 테이프의 성형이 가능하기 위해서는 TF phase 값이 17$^{\circ}$이상이어야 함을 유추할 수 있었다.

Alumina tapes, having various weight ratios of alumina powder/(alumina+binder+plasticizer), X, and binder / (binder+plsticizer), Y, were prepared and their complex modulus was measured using Micro Fourier Rheometer. As the X and Y ratios increased, Transfer function(TF) magnitude and Transfer function (TF) phase increased and decreased, respectively, indicating that the elastic modulus of the tapes depends on the weight ratios. The temperature dependence of the viscosity of the tapes was visualized by the decreased TF magnitude and the increased TF phase. The Y ratio dependence of the complex modulus related to the glass transition temperature of the tapes and the moduls change by the Y ratio was higher than that by the X ratio within the comperature of the tapes and the modulus changes by the Y ratio was higher than that by the X ratio within the composition range, investigated in the present study. The measurement of the complex modulus of the alumina tapes suggested that the TF phase should be higher that 17$^{\circ}$for the tapes to be utilized for 3-dimensional shaping.

키워드

참고문헌

  1. Am. Ceram. Soc. Bull. v.65 no.4 Making Thin, Flat Ceramics;a Review E. P. Hyatt
  2. Ceramic Processing Before Firing Tape Casting of Ceramics R. E. Mistler;D. J. Shanefield;R. B. Runk;G. Y. Onoda(ed.);L. L. Hench(ed.)
  3. Bioceramics v.10 Fabrication of IN-CERAM Core by Sheet Forming Process Dae-Joon Kim;Myung-Hyun Lee;Chang-Eun Kim
  4. Viscoelasticity of Engineering Materials Y. M. Haddad
  5. J. Non-Newtonian Fluid Mech v.65 An Experimental Investigation of the use of Random Squeezing to Determine the Complex Modulus of Viscoelastic Materials J. S. Field;M. V. Swain;N. Phan-Thien
  6. Journal of the European Ceramic Society v.17 Tape Casting of Alumina in Water with an Acrylic Latex Binder A. Kristoffersson;Elis Carlstrom
  7. Dynamic Mechanical Analysis of Polymeric Material Molecular Interpretation Takayuki Murayama
  8. Creep and Relaxation of Nonlinear Viscoelastic Matcrials William N. Findley;James S. Lai;Kasif Onaran
  9. J. Kor. Ceram. Soc. v.35 no.7 Effect of Organic Additive Composition on Glass Transition Temperatures and Storage Moduli of Al₂O₃ Green Tapes Myung-Hyun Lee;Jeong-Hoon Lee;Chang-Eun Kim;Dae-Joon Kim;Nam-Sik Oh
  10. American Ceramic Society Bulletin v.71 no.11 The Role of Slip Additives in Tape Casting Technology;Part2-Binder and Plasticizers Rodrigo Moreno
  11. Polymer Testing v.4 Dynamic Mechanical Method in the Characterization of Solid Polymers R. E. Wetton
  12. ACS Professional Reference Book (2nd edition) Physical Properties of Polymers James E. Mark
  13. Trans. Soc. Rheol. v.16 Restrictions upon Viscoelastic Relaxation Functions and Complex Modulli Christensen
  14. J. Rheol. v.35 Determination of Relaxation System from Ossillatory-Shear Data Orbey N.;Ded J. M.
  15. J. Applied. Phys. v.25 no.11 Theory of Stress-Strain Relationship in Anisotropic Viscoelasticity and Relaxation Phenomena Biot M. A.
  16. Thermal Characterization of Polymeric Materials Thermoplastic Polymers Shalaby W. Shalaby;Edith A. Turi(ed.)
  17. Introduction to Polymer Viscoelasticity Thermoplastic Polymers Richard P. Chartoff