Particle Size Effects on Microstructure Evolution and Microwave Dielectric Characteristics in $0.93MgTiO_3-0.07CaTiO_3$Ceramics

  • Lee, Jung-A (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Kim, Jeong-Joo (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Kim, Nam-Kyong (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Cho, Sang-Hee (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Hahn, Jin-Woo (Electronics and Telecommunications Research Institute)
  • Published : 1999.09.01

Abstract

Effect of the particle size of $MgTiO_3$ and $CaTiO_3$ on the microstructural evolution during sintering of $0.93MgTiO_3-0.07CaTiO_3$ system was investigated. Microwave dielectric characteristics of the sintered ceramics were also measured. The microstructural evolutions were explained with an emphasis on the entrapping behavior of $CaTiO_3$ grain into the $MgTiO_3$ grain and were correlated with microwave dielectric characteristics. With an increasing particle size ratio between $CaTiO_3$and $MgTiO_3$, the fraction of entraped $CaTiO_3$ grains increased, which grain growth of $MgTiO_3$were concurrently accelerated due to decreasing drag force of its boundary migration. Besides, $CaTiO_3$-grain entrapment into the $MgTiO_3$grain interior led to decreaseing quality factor values.

Keywords

References

  1. J. Kor. Ceram. Soc. v.34 no.8 Effect of Dopants on the Microwave Dielectric Properties of (1-x)MgTiO₃-xCaTiO₃ Ceramics D. C. Woo;H. Y. Lee;J. H. Han;T. H. Kim;T. G. Choy
  2. J. Mater. Res. v.12 The Effect of Cr and La on MgTiO₃-CaTiO₃ Microwave Dielectric Ceramics V. M. Ferreira;F. Azough;R. Freer;J. L. Baptista
  3. J. Kor. Phy. Soc. v.32 Microwave Dielectric-properties of Magnesium Calcium Titanate Ceramics Prepared by Semi Alkoxide Methods R. Piagai;I. T. Kim;J. G. Park;Y. Kim
  4. in Phase Diagram for Ceramist, Fig. 4533 and Fig. 5380 M. A. Rouf;A. H. Cooper;H. B. Bell;E. M. Levin(ed.);C. R. Robbins(ed.);H. F. McMurdie(ed.);M. K. Reser(ed.)
  5. Quantitative Stereology E. E. Underwood
  6. IRE. Trans. Microwave Theory Tech., MTT-8 A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range B. W. Hakki;P. D. Colemann
  7. Sintering Theory and Practice R. M. German
  8. J. Am. Ceram. Soc. v.79 no.12 Particle-Inhibited Grain Growth in Al₂O₃-SiC:I, Experimental Results L. C. Stearns;M. P. Harmer
  9. J. Am. Ceram. Soc. v.79 no.12 Particle-Inhibited Grain Growth in Al₂O₃-SiC:II, Equilibrium and Kinetic Analyses L. C. Stearns;M. P. Harmer
  10. Trans. Am. Inst. Min. Metall. Soc. v.175 Grains, Phase, and Interfaces: An Interpretation of Microstructure C. Zener;C. S. Smith(communicated)
  11. J. Am. Ceram. Soc. v.75 no.5 Microstructure and Densification of Pressless-Sintered Al₂O₃-Si₃N₄-Whisker Composites W. J. Tseng;D. Funkenbusch
  12. Electronic Ceramics B. C. h. Steele
  13. Phys. Rev. v.125 Microwave Absorption in Cubic Strontium Titanate B. D. Silverman
  14. J. Am. Ceram. Soc. v.75 no.9 Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskite $Ba(Zn_{1/3}Ta_{2/3})O_3$ D. A. Sagala;S. Nambu
  15. J. Am. Ceram. Soc. v.66 no.6 Ba(Zn, Ta)O₃ Ceramics with Low Dielectric Loss S. Kawashima;M. Nishida;I. Ueda;H. Ouchi
  16. Electroceramics: Materials Properties Applications A. J. Moulson;J. Herbert