Studies on Cure Behavior and Thermal Stability of Epoxy/Polyurethane Blend System

에폭시/폴리우레탄 블렌드 계의 경화거동과 열안정성에 관한 연구

  • 박수진 (한국화학연구소 화학소재연구부) ;
  • 진중성 (한국화학연구소 화학소재연구부) ;
  • 이재락 (한국화학연구소 화학소재연구부) ;
  • 방병기 (전북대학교 섬유공학과)
  • Published : 1999.09.01

Abstract

The effects of different epoxy resin(EP) and polyurethane (PU) blend composition ratios on cure kinetics and thermal stability were studied with DSC and TGA. In this work. 20 phr of DDM (4,4'-diamino diphenyl methane) was used as a curing agnet for epoxy resin and the content of EP/PU was varied within 100/0∼100/60 phr. Conversion (α), cure activation energy ($E_{a}$), and glass transition temperature ($T_{g}$) were determined by dynamic and isothermal DSC. As a result, both α and $E_{a}$ were increased at 40 phr of PU, and $T_{g}$ peaks of EP/PU were closest at 40 phr of PU. From the TGA results of EP/PU blend system, the thermal stability based on initial decomposed activation energy ($E_{a}$) was investigated. The thermal stability decreased with increasing the amount of PU, up to 40 phr of PU. These results could be explained by the increase in reactivity between the hydroxyl group in EP and isocyanate group in PU, resulting in an increase in the crosslinking density.

Keywords

References

  1. ACS symposium series 221 In Epoxy Resin Chemistry Ⅱ J.S.Osinski;L.T.Manzione;R.S.Bauer(Ed.)
  2. Epoxy Resins: Chemistry and Technology(2nd Ed.) C.A.May
  3. Polymer J. v.31 S.J.Park;W.B.Park;J.R.Lee
  4. Polym. Mater. Sci. Eng. v.65 X.Han;Y.Wang;S.Pan;Q.Zheng
  5. Polym. Mater. Sci. Eng. v.60 L.H.Sperling;C.E.Carraher
  6. J. Appl. Polym. Sci. v.39 T.Hur;J.A.Manson;R.W.Hertzberg;L.H.Sperling
  7. Encyclopedia of Polymer Science and Engineering(2nd Ed.) v.13 H.F.Mark;N.M.Bikales;C.G.Overbergerm;G.Menges
  8. Colloid & Polym. Sci. v.263 S.B.Lin;K.S.Hwang;S.Y.Tsay;S.L.Cooper
  9. J. Appl. Polym. Sci. v.9 L.H.Lee
  10. Adv. Polym. Sci. v.1 K.Dusek
  11. J. Appl. Polym. Sci. v.43 X.Wang;J.K.Gillham
  12. J. Polym. Sci. v.C53 U.T.Kreibich;R.Schmid
  13. Polymer v.19 K.Dusek;J.Plestil;F.Ledmcky
  14. J. Polym. Sci. Polym. Phys. Ed. v.28 S.U.Bidstrup;C.W.Macosko
  15. Macromolecules v.26 K.C.Cheng;W.Y.Chiu
  16. Polymer(Korea) v.18 W.Y.Seo;K.E.Min
  17. J. Polym. Sci. Polym. Chem. Ed. v.34 Y.Li;S.Mao
  18. J. Korean Fiber Soc. v.36 M.S.Doh;S.Mah;S.Choi;S.W.Seo;H.S.Lee
  19. J. Appl. Polym. Sci. v.11 K.E.Barrentt
  20. Bull. Chem. Soc. Jpn. v.38 T.Ozawa
  21. J. Res. Nat. Bureau Stand. v.57 H.E.Kissinger
  22. J. Polym. Eng. v.16 T.Ojeda;S.Liberman;R.Amorim;D.Samios
  23. J. Appl. Polym. v.5 C.D.Doyle
  24. Polymer v.36 X.Ramis;J.C.Salla
  25. Anal. Chem. v.60 D.N.Waters;L.P.John
  26. Anal. Chem. v.33 C.D.Doyle
  27. Polymer(Korea) v.23 G.H.Kwak;S.J.Park;J.R.Lee;S.K.Hong
  28. Anal. Chem. v.35 H.H.Horowitz;G.Metzger