폴리에틸렌옥사이드 수용액의 유변학적 특성 평가(IV) -일단계 대변형하에서의 비선형 응력완화거동-

Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions(IV) -Nonlinear Stress Relaxation in Single-Step Large Shear Deformations-

  • 송기원 (부산대학교 공과대학 섬유공학과) ;
  • 예상호 (부산대학교 공과대학 섬유공학과) ;
  • 장갑식 (부산대학교 공과대학 섬유공학과)
  • 발행 : 1999.05.01

초록

In order to investigate the nonlinear stress relaxation behavior of viscoelastic polymer liquids at large shear deformations, the relaxation modulus G(t, r) of concentrated aqueous poly(ethylene oxide) (PEO) solutions has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear strain magnitudes. The strain dependence of G(t, r) at various molecular weights and concentrations was reported in detail, and the result was interpreted using the Doi-Edwards theory. In addition, the time-strain separability (or factorability) of the nonlinear relaxation behavior was examined by superposing the G(t, r) curve on the linear relaxation modulus G(t) surve through a simple vertical shift. The experimentally determined damping function h(r) was compared with the results calculated from some empirical equations proposed by earlier researchers, and finally the effects of molecular weight and concentration on h(r) were discussed. Main results obtained from this study can be summarized as follows : (1) The G(t, r) curve at small range of strain magnitudes shows a linear relaxation behavior, which is independent of the deformation magnitude. As the strain magnitude is increased, however, the G(t, r) curve deviates from the linear relaxation behavior and falls successively below the G(t) curve. (2) When sufficiently large strain magnitude is imposed on the highly concentrated solutions polymer of high molecular weight, the G(t, r) curve shows a more complex shape having the two inflection points. This behavior is due to the occurrence of a new relaxation process, and can be accounted for by the retraction process of primitive polymer chains in the tube, as predicted by the Doi-Edwards theory. (3) The G(t, r) is separable (or factorable) into a time-dependent function G(t) and a strain-dependent function h(r) when the time region is longer than the experimentally determined material time constant ${\lambda}_{k}$. The ${\lambda}_{k}$ increases with increasing molecular weight and concentration. (4) The empiricisms proposed by Wagner and Osaki cannot provide an adequate description to predict the nonlinear relaxation behavior. In contrast, both the Zapas and Soskey-Winter relationships are in excellent agreement with the experimentally determined h(r). The h(r) shows a stronger dependence on the strain magnitude with increasing molecular weight and concentration.

키워드

참고문헌

  1. Viscoelastic Properties of Polymers(3rd Ed.) J. D. Ferry
  2. Constitutive Equations for Polymer Melts and Solutions R. G. Larson
  3. Melt Rheology and Its Role in Plastics Processing : Theory and Applications J. M. Dealy;K. E. Wissbrun
  4. J. Chem. Soc. Faraday Trans. Ⅱ v.74 M. Doi;S. F. Edwards
  5. J. Polym. Sci. : Polym. Phys. Ed. v.18 M. Doi
  6. J. Polym. Sci. : Palym. Phys. Ed. v.13 M. Fukuda;K. Osaki;M. Kurata
  7. Macromolecules v.13 K. Osaki;M. Kurata
  8. Polymer J. v.17 M. Kurata
  9. Macromolecules v.15 K. Osaki;K. Nishizawa;M. Kurata
  10. Macromolecules v.20 K. Osaki;E. Takatori;M. Kurata
  11. J. Polym. Sci. : Polym. Phys. Ed. v.18 M. Doi
  12. J. Polym. Sci. : Polym. Phys. Ed. v.20 K. Osaki;M. Kurata
  13. J. Rheol. v.29 K. Osaki;S. Kimura;M. Kurata
  14. J. Rheol. v.34 D. C. Venerus;C. M. Vrentas;J. S. Vrentas
  15. Macromolecules v.23 J. S. Vrentas;C. M. Vrentas;D. C. Venerus
  16. J. Rheol. v.38 D. C. Venerus;H. Kahvand
  17. J. Polym. Sci. : Polym. Phys. Ed. v.32 D. C. Venerus;H. Kahvand
  18. Trans. Soc. Rheol. v.7 B. Bernstein;E. A. kearsley;L. J. Zapas
  19. Rheol. Acta v.11 A. S. Lodge;J. Meissner
  20. Trans. Faraday Soc. v.52 A. S. Lodge
  21. Elastic Liquids A. S. Lodge
  22. J. Chem. Phys. v.14 M. S. Green;A. V. Tobolsky
  23. Rheol. Acta v.15 M. H. Wagner
  24. Proc. Ⅶth Intern. Congr. Rheol. K. Osaki
  25. Rheol. Acta v.17 H. M. Laun
  26. J. Res. Nat. Bur. Stds. v.70A L. J. Zapas
  27. AIChE J. v.16 E. B. Adams;D. C. Bogue
  28. J. Rheol. v.29 R. G. Larson
  29. J. Rheol. v.28 P. R. Soskey;H. H. Winter
  30. J. Soc. Rheol. Japan v.24 M. Takahashi;O. Urakawa;N. G. Ebrahimi;T. Isaki;T. Masuda
  31. J. Rheol. v.27 A. C. Papanastasiou;L. E. Scriven;C. W. Macosko
  32. J. Rheol. v.32 R. I. Tanner
  33. Int. J. Num. Meth. Eng. v.25 X. L. Luo;R. I. Tanner
  34. J. Rheol. v.34 M. H. Wagner;A. Demarmels
  35. Rheol. Acta v.29 M. H. Wagner
  36. Poly(Ethylene Oxide) F. E. Bailey;J. V. Koleske
  37. Polym. Bulletin v.9 W. M. Kulicke;M. Elsabee;C. D. Eisenbach;M. Peuscher
  38. Rheol. Acta v.36 V. Gauri;K. W. Koelling
  39. J. Korean Fiber Soc. v.35 K. W. Song;G. S. Chang;C. B. Kim;J. O. Lee;J. S. Paik
  40. J. Korean Fiber Soc. v.33 K. W. Song;G. S. Chang;C. B. Kim;J. O. Lee;J. S. Paik
  41. J. Non-Newt. Fluid Mech. v.9 C. M. Vrentas;W. W. Graessley
  42. J. Res. Nat. Bur. Stds. v.75A L. J. Zapas;J. C. Phillips
  43. Proc. '97 Kyushu-Seibu/Pusan-Kyeongnam Joint Symp. High Polymers & Fibers K. W. Song;G. S. Chang;S. H. Ye
  44. Proc. '98 KFS Spring Meeting K. W. Song;S. H. Ye;G. S. Chang
  45. J. Korean Fiber Soc. v.35 K. W. Song;D. H. Noh;G. S. Chang
  46. Polymer v.36 Y. Isono;T. Nishitake
  47. J. Polym. Sci. v.40 A. V. Tobolsky;K. Murakami
  48. The Tehory of Polymer Dynamics M.Doi;S. F. Edwards