생촉매를 이용한 광학활성 에폭사이드 생산

Biocatalytic Production of Chiral Epoxides

  • 이은열 (경성대학교 공과대학 식품공학과) ;
  • 최원재 (서울대학교 공과대학 공업화학과) ;
  • 윤성준 (경성대학교 공과대학 식품공학과) ;
  • 김희숙 (경성대학교 공과대학 식품공학과) ;
  • 최차용 (서울대학교 공과대학 공업화학과)
  • 발행 : 1999.06.01

초록

광학활성 에폭사이드는 광학활성 의약품, 농약, 기능성 식품 제조용 핵심 유기중간체로 사용될 수 있다. 광학활성 에폭사이드의 생물공학적 생산 사례로는 diltiazem 합성용 중간체인 methyl trans-3-(4-methoxyphenyl)glycidate를 lipase를 고정화한 중공사막 반응기를 이용하여 생산되고 있으며, 미생물 탈할로겐화반응을 이용하여 광학활성 epichlorohydrin 및 glycidol도 생산되고 있다. 생물공학적으로 광학활성 에폭사이드를 생산하는 방법은 크게 두 가지로 구분할 수 있는데, 알켄 등을 기질로 하여 monooxygenase나 perocidase 등을 이용하여 직접 에폭시화반응을 시키는 방법과 박테리아, 곰팡이, 효모 유래의 미생물 에폭사이드 가수분해효소를 이용하여 라세믹 에폭사이드를 광학분할시켜 얻는 방법이 있다. 특히 에폭사이드 가수분해효소를 이용한 광학활성 에폭사이드 생산은 높은 광학순도를 얻을 수 있으며 일반적으로 라세믹 에폭사이드를 값싸고 쉽게 구할 수 있어 상업화 가능성이 우수하므로 이에 대한 많은 연구개발이 필요하다.

Chiral epoxides are key intermediates for the production of chiral pharmaceuticals, agrochemicals, and functional food additives. Chiral epoxides can be produced by either chemical or biological method. In biocatalytic production routes, chiral epoxides can be produced via epoxidations of prochiral alkenes by monooxygenase or peroxidase. Kinetic resolution of racemic epoxides using whole cells of bacteria or fungi might be commercially useful, since it is possible to obtain chiral epoxides with high optical purities from relatively cheap and readily avaiable racemic epoxides. Some bioprocesses already are commercially developed: the biocatalytic production of chiral epichlorohydrin via microbial stereospecific dehalogenation, and lipase-catalyzed enantioselective hydrolysis in a hollow fiber membrane bioreactor for the production of chiral methyl trans-3-(4-methoxyphenyl)glycidate. the intermediate for calcium antagonist diltiazem. The importance of biocatalytic production of chiral epoxides with several examples from literature are presented.

키워드

참고문헌

  1. Tetrahedron. v.50 Chemical and bilogical synthesis of chiral epoxides Besse, P.;H. Veschambre
  2. J. Am. Chem. Soc. v.109 Catalytic asymmetric epoxidation and kinetic resolution: Modified procedures including in situ derivatization Gao, Y.;R. M. Hanson;J. M. Klunder;S. Y. Ko;H. Masamune;K. B. Sharpless
  3. Science v.277 Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis Tokunaga, M.;J. F. Larrow;F. Kakiuchi;E. N. Jacobsen
  4. TIBTECH. v.10 The microbial production of epoxides Leak, D. J.;P. J. Aikens;M. Seyed-Mahmoudian
  5. Appl. Microbiol. Biotechnol. v.37 Biocatalysts for prodcution of chiral epoxides Mahmoudian, M.;A.L.O. Michael
  6. Tran. Chem. Pays. Bas. v.110 Asymmetric epoxidation of ally1 alcohol derivatives by omeg-hydroxylase from Pseudomonas oeoverans, Recuan Fu, H.;G. J. Shen;C. H. Wong
  7. J. Ind. Mcirobiol. v.11 Prodcution of chiral epoxides by an ethen-utilizing Micrococcus sp. mahmoudian, M.;A, Michael
  8. Appl. Microbial. Biotechnol. v.37 Stereoselective epoxidationof phenyl allyl ether by alkene-utilizing bacteria Mahmoudian, M;A. Michael
  9. Appl. Environ. Mcirobiol. v.34 Epoxidation of 1,7-octadiene by Pseudomonas olevorans : Fermentation in the presence of cyclohexane Schwartz, R. D.;C. J. McCoy
  10. Biochem. Biophys. Res. Comm. v.136 Epoxidation of alkenes by chloroperoxidase catalysis Geigert, J.;D. J. Dalietos;D. S. Hirano;T. D. Lee;S. L. Neidleman
  11. Acta Chemica Scandinavica v.50 Microbial epoxide hydrolases Faber, K.;M. Mischitz;W. Krotil
  12. Tetrahedron: Asymmetry v.4 Asymmetric hydrolysis of epoxides using an immobilized enzyme preparation from Rhodococcus sp. Hechtberger P.;G. Wirnsberger;M. Mischitz;N. Klempier;K. Faber
  13. Biotechnol. Lett. v.17 Isolation of a highly enantioselective epoxide-hydrolase from Rhodococcus sp. NCIMB 11216 Mischitz, M.;K. Faber;K. willetts
  14. FEMS Microbiol. Lett. v.141 Novel aliphatic epoxide hydrolase activities from dematiaceous fungi Grogan, G.;S. M. Roberts;A. J. Willets
  15. Tetrahedron: Asymmetry v.8 Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis Weijers, C. A. G. M.
  16. Enzyme Microb. Technol. v.13 Enantioselective degradation of 1,2-expoyalkanes by Nocardia H8 Weijers, C. A. G. M.;J. A. M. de Bont
  17. Tetrahedron: Asymmetry v.4 Bioformationof optically pure epoxides de Bont, J. A. M.
  18. European Patent Application, 0611826 A2 Matsuyama, A.;Y. Kobayashi
  19. J. Org. Chem. v.61 Microbiological transformations. 33.Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach Moreau, S. P.;C. Morisseau;J. Zylber;A. Archelas;J. Baratti;R. Furstoss
  20. Tetrahedron Lett. v.37 Microbiological transforation. 31: Synthesis of enantiopure epoxides and vicinal diols using fungal epoxide hydrolase mediate hydrolysis Moreau, S. P.;A. Archelas;R. Fustoss
  21. Enzyme Microb. Technol. v.20 Asymmetric hydrolysis of racemic para-nitrostyrene oxide using an epoxide hydrolase preparation from Aspergillus niger Morisseau, C.;H. Nellaiah;A. Archelas;R. Furstoss;J. C. Baratti
  22. Biotechnol. Techniques v.12 Kinetic resolution for optically active epoxides by microbial enantioselectiv e hydrolysis Choi, W. J.;E. C. Huh;H. J. Park;E. Y. Lee;C. Y. Choi
  23. J. Chem. Soc. Perkin Trans.1 v.13 Lipase catalysis in the resolution of racemic intermediates of diltiazem synthesis in organic solvents Kanerva, L.T.;O. Sundholm
  24. J. Am. Chem. Soc. v.106 Lipase=catalyzed hydrolysis as a route to esters of chiral epoxy alcohols Landner, W. E.;g. M. J. whitesides
  25. Tetrahedron Lett. v.30 A chemoenzymatic access to optically active 1,2-epoxides Chen, C. S.;Y. C. Liu
  26. J. Org. Chem. v.56 Enzymatic resolution of 2-substituted oxiranemethanols, a class of synthetically useful building-block bearing a chiral quaternary center Ferraboschi, P.;D. Brembilla;P. grisenti;E. Santaniello
  27. Tetrahedron: Asymmetry v.3 Stereo-selective synthesis of (S)-propanol aminesA: Lipase catalyzed opeining of epoxides with 2-proylamine Kamal, Y.;Y. Damayanthi;M. V. Rao
  28. J. Ferment. Bioeng. v.75 Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazum hydrochloride Matsumae, H.;M. Furui;T. Shibatani
  29. J. Ferment. Bioeng. v.78 Production of optically active 3-phenylglycidic acid ester by the lipase from Serratia marcescens on a hollow-fiber membrane reactor Matsumae, H.;M. Furui;T. Shibatani;t. Tosa
  30. J. Ferment. Bioeng. v.81 A membrane bioreactor combined with crystallizer for production of optically active (2R.3S)-3-(4-methoxyphenyl)-glycidic acid methly ester Furui, M.;T. Furutani;T. Shibatani;Y. Nakamoto;T. Mori
  31. Agric. Biol. Chem. v.54 Degradation of 2,3-dichloro-1-propanol by a Pseudomonas Kasai, N.;K. Tsujimira;K. Unoura;T. Suzuki
  32. Agric. Biol. Chem. v.55 Microbial transforamtation of prodchiral 1,3-dichloro-2-propanol into optically active 3-chloro-1,2-propanediol Nakamura, T.;F. Yu;W. Mizunashi;I. Watanabe
  33. J. Ferment. Bioeng. v.73 Isolation of a bacterium assimilating (R)-3-chloro-1,2-propanediol and production of (S)-3-chloro-1,2-propanediol using microbial resolution Suzuki, T.;N. Kasai;R. Yamamoto;N. Minamiura