Abstract
This study is aimed to obtain fundamental knowledge of pulse laser welding phenomena the authors investigated the structure and composition of evaporated particles of Al alloys in air and in the Ar atmosphere during pulsed laser welding. The ultra-fine particles of 5 to 100nm diameter in a globular or irregular shape were formed in laser-induced plasma and the main structure was $MgAl_2O_4$ The composition of particles was ifferent depending on the power density of a laser beam; namely under the low power density conditions magnesium was predominant in the parti-cles while aluminium content increased with an increase in the power density. These results were attributed to evaporation phenomena of metals with different boiling points and latent heats of vaporization. On the other hand the number density of laser-induced plasma species was obtained by Saha's equation. it was confirmed that the number density depends upon the plasma tempera-ture and total pressures.