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ABSTRACT

A linear feature often provides sufficient information for image understanding and coding. An objective
of the research reported in this paper is to develop and analyze the reliable methods of extracting lines
in gray scale images. The Hough Transform is known as one of the optimal paradigms to detect or identify
the linear features by transforming edges in images into peaks in parameter space. The scheme proposed
here uses the fuzzy gradient direction model and weighs the gradient magnitudes for deciding the voting
values to be accumulated in parameter space. This leads to significant computational savings by restricting
the transform to within some support region of the observed gradient direction which can be considered
as a fuzzy variable and produces robust results.
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1. Introduction

From a mathematical perspective, finding the
collinear points is equivalent to searching for
concurrent lines passing through those points. We
can approach this problem in two ways. The first
way is to draw a probe line and examine the
collinear feature points on that line. Or secondly,
to draw the concurrent lines on each feature point
and to examine the frequency of each line where

frequency implies the number of points lying on
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that line. To implement this idea parametric
representations have been used to describe a line
and the discrete parameter spaces are created to
accumulate the frequencies. The Hough Transform
(HT) has been considered as an effective means
to implement this idea. The HT method has been
known to have many desirable features. The
independent treatment to each pixel allows for
parallel implementation and makes it possible to
recognize partial, deformed, or occluded shapes.
Also, it is possible to simultaneously accumulate
evidence of several examples of a particular shape

class occurring in the same image. Above all, it
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is very robust to noise, since noise is very unlikely
to contribute coherently to a particular cell of
parameter space. However, -HT has many dra-
whacks. First, it needs intensive computation and
large storage. Second, it is non-trivial task to
detect proper peaks in parameter space. Third,
false line problems and false point problems may
be issues under certain conditions[1]. To cope with
these drawbacks many modified HTs have been
devised[2-8]. In this paper the conventional HT is
modified by using the concepts from fuzzy set
theory[9). The Fuzzy HT(FHT) is proposed to
extract lines from images by using gradient
direction as a fuzzy variable and by weighing the
gradient magnitude based on its membership func—
tion in computing voting values. This algorithm
saves a significant amount of computation by
restricting the transform to within some support
region of each fuzzy variable which is observed
gradient direction of a pixel. It is also more robust
and flexible since they operate directly on the gray
scale image without binarization.

2. Standard Hough Transform(SHT)

Edges are usually defined as local discontinuities
or rapid changes in image feature, such as image
luminance or texture. These changes are detected
by a local operator that measures the magnitude
of the change and its direction. Let’s assume that
discrete gray scale image I(i,j) is an image
function. B is a binary matrix which is obtained
by enhancing and threshing edge pixels, can be
generated using gradient edge detector such as
h,(i,7) and h,(4,7) for x
and y direction operators respectively for any

Sobel operator. Let's

available edge detector. Then the gradient mag-
nitude matrix G, the gradient direction matrix G,
and binary edge map B can be obtained as follows:

Go(i, f)=arctan( G, (i, 7)) G,(i,7),

Cnli, =\ GG N2+ G,(iD7,

Lif G,(i)=>1

B(i,j)= 0, otherwise,

G.li)= 2 3 kDMt u i+,

G, (i, )= gl ut:l hy(u, )i+ u,j+v)
where k and [ are the x and y components of
selected edge detector respectively, and i=1..N,
j=1.M if an image I(i,j) is stored as N X M matrix.
Threshold r may be determined by the equation
r =4 +co, where u is the mean of I(i,j) and o
is the standard deviation of I(i,j) and c the arbitrary
constant weight to be selected heuristically.

If the normal parameterization is used, a line can
be uniquely represented as o= j sin 4 + i cos
4, 0 €[0, 7). We define a cell in parameter space
centered at (o, 81) as a rectangle Qk; of size 4 o
x4 @ . Each pixel, a voter, is to vote for the cells
in the parameter space, which may reflect the
instances of true linear features in an image matrix.
In SHTI(10}{11], each voter (i, jo) is qualified for
voting for multiple candidates provided that it has
a sufficient gradient magnitude. The geographic
position of a pixel and the parameter equation fixed
by its position confines the scope of the candidates

in parameter space for voting. That is,
{(0,0)1p-jpsin B-ipcos O1<(4p/2),V 0,0}

The geographic location and the shape of a
candidate £ determines its electoral district in an
image space(refer to [12] for details). That is, it
represents a particular constraint that is a collection
of particular instances of lines, and this constraint
can be mapped out in feature(image) space by

evaluating

(NI Upr—jsin6i-icos81<(4p/2)N ok
)< 2V ij).

From the observation above, the SHT has a dual
interpretation, which might cause two different

implementations (1) and (2) as follows:



H(k, D= ﬁ:‘.l ng(z',j) 84( 04— Jsin 6 ,— icos 0),

Viki=1...L,k=1...K (D
where
46=n/L, 6,=46(1—1), do=2VN +M /K,
0= (k—KJ2) - dp,

84(x)={ 1, — do/2{x<4dp/2
0, otherwise.

The values of K and L define the resolution of
parameter space H.

procedure SHT(n,m N,M,O,K,L var H); 2
A0=2r/L; 49=2x/L; do=2V N +M K
for i=1 to N do

for j= 1 to M do
if B(i,/)=1 then
for /=1 to L do
0,=40(1—-1); k=round(O-(j-m)
(n-i))cos 61); Hk,D)=H(k,D+1;
end; end; end;

sind -

The O is the center of the p -axis and (n,m)
is the center of I(i,j).

3. The Modified Fuzzy Hough Transform
(MFHT)

The simple edge operators such as Sobel and
Prewitt are well established and commonly used
to extract edge features, chiefly because of their
computational simplicity. It was shown that, even
for a straight step edge of uniform contrast, the
gradient magnitudes and directions computed by
these edge operators may vary considerably
because of their inherent orientation bias or
distance bias[14]. This poses difficulties for Hough
schemes to utilize the gradient magnitudes and
directions as voting parameters. In order to avoid
this problems, several modified Hough schemes
were suggested[1,13]. However, those algorithms
may generate the other issues, such as the selection
of additional parameters, which are usually to be
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determined heuristically. From this observation
SHT is modified by using the concepts from fuzzy
set theory so that the local variation in the
observed gradient direction at a pixel should be
properly utilized. The observed gradient direction
and its local variation are considered as a fuzzy
variable and its fuzzy membership function
respectively. Such a fuzzy model is estimated by
using image model and computational methodologies
suggested by Malin[14]. In the MFHT algorithms,
each pixel can vote for all candidates whose
gradient directions are similar to the voter. Hence
the voting mechanism may be more refined by
considering inherent propensity at a pixel position
as well as the geometric location and the shape of

candidate.

3.1 IMAGE AND EDGE MODEL

Assume that image function is given as follows
(the origin is assumed to be the center of image
for convenience):

A y) = 1, xcos0+ ysinf=r
Y _{ 0, otherwise.

The image plane is tessellated with a square grid
of unit length. A pixel is identified with each of
these squares and taken as its receptive field. The
edge model is a step edge of unit contrast; zero
intensity on one side, unit intensity on the other.
Hence the intensity of a pixel is the integration of
the light intensity over its associated square with
uniform weighting over the square. The intensity
for a pixel is computed as follows: first, because
of the symmetry of the pixel grid and the edge
operator, we need consider only orientations in the
range 0° to 45°. The computation can be easily
extended to other angles with a little algebra. Take
the center of a pixel as its origin. Then for an edge
with orientation 6 and offset o, the integrated
intensity fl o, 6 ) for the pixel on that edge is the
area of the intersection of the pixel with the bright
side of the edge as follows:
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Ro,0)= 1-A—p, 0, for p<0,

0, for 6=0°,0p21/2,
1/2—p, for 6=0°,0<p<1/2,
0, for 6>0°,1/2<9,

tan/8+1/4 —p/2cos 6+ 1/8tan 6 —
p/2sin@+ 0%/sin26, for
6> 0°,—1/2<9<1/2,
1/2—p/cos 6, for 6> 07, p<—1/2,

where 7= pcscd—1/2cotd. The gradient ma-
gnitudes and directions are obtained by taking the
Euclidean norm and this gradient vector. That is,
Gul )=\ G.GN*+ G,Gn%
tanf= G,(4, 7))/ G,.(i,7), where G(i, ) and G,(i,
J) are x and y components of intensity gradient

respectively. From this, all gradient directions are
computed given the edge model whose angle
parameters happen to be the gradient direction,
which can be considered as a fuzzy variable.

3.2 Membership Function and Algorithm

Here the major concern is the distributions of
gradient magnitudes and directions when an image
function is defined on the properly defined image
matrix with given edge operator. We can assume
that those distributions may reflect fuzzy behaviors
of the observed gradient direction of a pixel, even
though this analytical computation is done under
ideal image condition. Assume that the image lines
are infinitely extended and the boundary of 256 X
256 image plane is extended by one pixel outwards
for computational convenience. The normal dis-
tance o in image function is limited in the range
{0, 1]. Since we are interested in the behavior of
edge operator in terms of the distributions of
gradients, the outside of this range is not important
for general statistics. Also because of the symmetry
of the pixel grid and edge operators, the angles in
the range 0° to 45° are sufficient for analysis.

The Fig. 1 shows the distribution space of given

Edge Angle

Gradient Direction

Fig. 1. The distribution space of edge angles
which can be considered as an ideal
gradient directions.

edge direction from 0° to 45° , which are ideal
gradient directions to be observed at the pixels
along the edge. The y-axis represents the edge
directions. The x-axis shows the distributions of
the gradient directions actually computed using
Sobel edge operator. To generate the membership
function of each gradient direction each column
tagged by each element of x-axis is projected onto
the y-axis and normalized to set the maximum
value of each membership function to unity. In this
example the incremental angle step is set to unity.
The size of this step could be adjusted according
to the requirements imposed on the applications.
The Fig. 2 shows the resultant membership func-
tions from 0° to 12° . The membership functions
of other angles can be easily derived based on this
base functions. The following is the MFHT

algorithm.

procedure MFTH;
20=2x/L; rp=2VN +M |K;
for 7=1 to N do
for =1 to M do
I=1LL- Gy(i,»/2n1; 6,= 26-(-1);
k= round(O— (i—m)cos §,—(n—1i)sin 8 ).
Hk,wy=Hl,w)+ G,(i,7)  n 4(w
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Fig. 2. The membership function ualw), ue (07,

12°]). The fuzzy subsets A are of gradient directions from

0° to 12° (the order is from left to right and from top to bottom).

end; end;

Here p ¢,(w) is the fuzzy membership function

of 4,

4. Experiments

Two experiments are conducted to evaluate the
performance of MFHT. First method uses the
synthetic image as shown in Fig. 3(a), while in
second one, wooden block image as shown in Fig.
3(b) is captured by using Panasonic WV 1600 TV
camera with 50mm(f/3.5) lens and Data translation
DDT2803 frame grabber is used to digitize this
image(6 bits/pixel, 240X 256 resolution).

A method commonly used to judge the use-
fulness of an image analysis algorithm is to
measure its performance under varying signal-to-

noise ratios. Signal-to-noise(SNR) is defined as

SNR = 10logio ( AR? | &® ) dB, where AU is the
average step between the regions of the image,
where a step is the difference in graif level between
the regions. The ¢ is the standard deviation of the
noise and ¢? its variance. SNR is undefined if the
variance of noise is zero. To simplify the com-
putation of Ah and the measurement process, the
simple half circle will be contained in a test image
I; as shown in Fig. 3(a)

The center of half circle image is centered at the
image plane and rotated from 0° to 45° . Also

(a)

(b)

Fig. 3. (a) the synthetic image, (b) the wooden
block image

three different lengths of the diameter of circle
were tested. A noise matrix I, , consisting of
normally distributed random numbers, was gen-
erated with mean at 0 and standard deviation of
1.0. The degree of noise is controlled by adjusting
the variance parameters. The final image matrix
is I which is I; + I, . A root-mean-square error
is used to determine the closeness of the elected
candidate to the expected total ballots for the ex-
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pected candidates in Hough space. For example,
assume that the expected locations of candidates are
{ (o, 0D, Cpa, 62), (o3, 03),, Cou 040}

Also assume that the elected candidates are
{C o7 67,0 p27, 627, 93*, 657, ...,
( 0,7, 6,")) Now the Euclidean distances

between the detected peaks and the expected peaks
in parameter space is given by

E=(1/m BV Com 0.0 +(0— 6.7

The performance of MFHT was measured, and
compared to the algorithms proposed by others
such as SHT, FHT{15], WPHTI1][13] and PRO
[16]). In FHT, each pixel votes for a single candidate
if it has sufficient gradient magnitude. The ori-
entation of its gradient and the parameter equation
fixed by its position is used to select the candidate.
In WPHT, every pixel votes uniformly for two
candidates whose gradient orientations are closer
than other candidates. The PRO can be considered
as a generalized voting system. Every pixel votes
for multiple candidates in Hough space. The
position of each pixel and the parameter equation
fixed by its position confines the scope of
candidates to be voted for. Each pixel has a single
ballot whose weight is determined by its gray
intensity. The acquired ballots of each candidate
is differentiated by comparing the voted ballots for

Errorin
Distance

Error in
Distance

SNR in dB
(a)

competitor locally. After obtaining H(k,I), the peak
detection should be performed in parameter space
in order to elect the true candidates who represent
linear features. In this paper a modification of the
NR scheme[13] is used. The NR scheme is a global
peak detection algorithm, that is, it detects only a
single peak in whole parameter space. It super-
imposes the local window centered at a candidate
in parameter space and selects the candidate with
a local maximum vote in a window, where the
summing up the votes in a window results in global

maximum sum. That is,
n,—1
7, c=m, % max( 1)20 H(m— p, n)), where n ,— 1

ML 04e— 1,020 00— 1. C 0 pocks 0 peci)
H(k, ¢)= max (H(j, ¢)), where

r— n,t1<5<7,

=k c:

where 0z, =2V N2+ M%/dp, 8 ;. =27/46. Fig.
4(a) and Fig. 4(b) show the resuits of error
measurements with two different resolutions of
Hough space. As expected, the suggested MFHT
performs well compared with the other schemes.
Fig. 5 shows the Hough spaces generated by SHT,
FHT, WPHT and WHT. Those spaces are
normalized by the maximum accumulation count
for visual comparisons. The advantages of the
suggested method are shown. The decrease of
irrelevant spread in Hough space is obvious and

SNR in dB
(b)

Fig. 4. The plotted results: (a) A8= 1, (b)A8=5. 0o: WPHT, x: SHT, +: MFHT, .: FHT, and*: PRO.
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Fig. 5. The resultant Hough spaces: (a)(b)SHT, (c)(d)FHT, (e)(f) WPHT (h)(i) MFHT

the peaks are more isolated, which makes the task
of peak detection easier.

5. Conclusion

To extract the linear features in gray scale
images, the SHT is modified to accommodate the
variations of gradient directions which are con-
sidered as fuzzy wvariables, The membership
functions are computed using the predefined image
and edge models by collecting the observed
distributions of gradient directions imbedded in the
synthetic image along the edge positions. The
experiments demonstrate that the proposed method
shows better performance than the conventional

ones.
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