The growth and characteristics $K_3$$Li_2$$Nb_5$$O_{15}$ of single crystals

$K_3$$Li_2$$Nb_5$$O_{15}$ 단결정의 성장과 특성에 관한 연구

  • Published : 1999.10.01

Abstract

The potassium lithium niobate $K_3$$Li_2$$Nb_5$$O_{15}$ single crystals were growing in $K_x$$Li_{1-x}$$NbO_3$ (x = 0.4~0.6) chemical formular by the Czorchralski method. Crystal growth is studied in two orientations with growth along a-axis and c-axis. We have subjected this crystal to x-ray diffraction studies and found that they are single-crystalline and belong to tetragonal system with the lattice parameters a = b = 12.577 $\AA$ and c = 3.997$\AA$. The temperature dependence of dielectric constant was measured in the region of the phase transition. Curie temperature and diffuseness of phase transition are influenced by composition concentration. The composition and cation distribution of ferroelectric TB-type niobate crystals has a strong influence on the ferroelectric properties. Growth condition, optical transmittance, etching pattern and dielectric properties are presented and discussed.

$K_3$$Li_2$$Nb_5$$O_{15}$KLN) 단결정을 $K_x$$Li_{1-x}$$NbO_3$의 조성에서 x= 0.04~0.6으로 결정성장방법으로 성장시켰다. 균열이 없는 양질의 결정성장을 위해 c축 및 a축 방향을 택하였고, 단결정 성장을 위한 최적의 조건에 대하여 연구하였다. 성장된 결정은 편광현미경 관찰을 통해 일축성 무늬를 볼수 있었고, X-선 회절실험에서 결정된 격자상수는 a=b=12.500 $\AA$, c=3.996$\AA$이었으며, 1HF : $2HNO_3$ 용액의 부식에서 c축 방향으로 정사각형 및 a축 방향으로 직사각형의 부식상을 볼수 있었다. 광투과율 측정과 온도에 따른 유전상수 측정등을 통해 KLN 결정의 광학적 특성 및 다른 조성을 갖는 시료에서 유전특성을 조사하였다. $420^{\circ}C$에서 상전이 온도를 갖는 결정은 확산상전이(diffuse phase transition) 특성을 갖는 반면 $493^{\circ}C$에서 상전이 온도를 보이는 결정은 날카로운(shap) 유전특성을 나타내었다.

Keywords

References

  1. Landolt-B$\"{o}$rnstein New Series ferroelectrics and related substances ; Group III v.16 T. Mitsui;K.-H. Hellwege(ed.)
  2. Landolt-B$\"{o}$rnstein New Series ferroelectrics and related substances : Group III v.28 E. Nakamura;O. Madelung(Ed.)
  3. Thin Solid Films v.96 Tadashi Shiosaki;Masatoshi Adachi;Akira Kawabata
  4. Ferroelectric Materials and their Application Yuhuan Xu
  5. Appl. Phys. Lett. v.37 Hiroshi Takeuch;Kunio Yamashita
  6. Jpn. J. Appl. Phys. v.30 M. Adachi;A. Kawabata;F. Takeda
  7. Jpn. J. Appl. Phys. v.9 Yataka Uematsu;Shigenao Koide
  8. Ferroelectrics v.27 M. Adachi;T. Shiosaki;A. Kawabata
  9. J. Opt. Soc. Am. v.3 R.R. Neurganonkar;W.K. Coty
  10. Appl. Phys. Lett. v.11 L.G. Van Uitert;S. Singh;H.J. Levinstein;J.E. Geusic;W.A. Bonner
  11. Mat. Res. Bull. v.5 B.A. Scott;E.A. Giess;B.L. Olson;G. Burn;A.W. Smith;D.F. O'Kane
  12. Jpn. J. Appl. Phys. v.12 T. Nagai;T. Ikeda
  13. Jpn. J. Appl. Phys. v.9 T. Ikeda;K. Kiyohashi
  14. Mat. Res. Bull. v.24 R.R. Neurgaonkar;W.K. Cory;J.R. Oliver;L.E. Cross
  15. Jpn. J. Appl. Phys. v.17 Masatoshi Adachi;Minoru Hori;Tadashi Shiosaki;Akira Kawabata
  16. Jpn. J. Appl. Phys. v.18 Masathshi Adachi;Tadashi Sniosake;Akira Kawabata
  17. J. Crystal Growth v.194 S. Youting;Z. Daofan;L. Hongbin;A. Tang;F. Feidi;Y. Changxi;Z. Yong;W. Xing
  18. Cryst. Res. Technol. v.32 H.R. Xia;L.J. Hu;J.Q. Wei;J.Y. Wang;Y.G. Liu
  19. Ferroelectrics v.2 F.W. Ainger;J.A. Beswick;W.P. Bickley;R. Clarke;G.V. Smith
  20. Ferroelectrics v.157 B.M. Jin;A.S. Bhalla;J.N. Kim
  21. J. Phys. Chem. Solids v.27 S.C. Abrahams;H.J. Levinstein;J.M. Reddy
  22. Sov. Phys. Crystallogr. v.18 I.G. Ismailzade;V.I. Nesterenko;E.A. Il'Yasov
  23. Jpn. J. Appl. Phys. v.37 T. Karaki;K. Miyashita;M. Nakatsuji;M. Adachi
  24. Ferroelectrics v.196 Zhiming Chen;Masanobu Tago;Masatoshi Adachi;Akira Kawabata
  25. Elements of X-ray Diffraction B.D. Cullity
  26. J. Crystal Growth v.193 G.Y. Kang;J.K. Yoon
  27. 응용물리 v.5 고재석;김연중;최성원;신영호
  28. 새물리 v.33 주효석;김유민;박광서
  29. 새물리 v.36 김진수;백현호;김정남