TSSG growth, morphology and properties of potassium lithium niobate (KLN) crystals

  • Chong, Tow-Chong (Data Storage Institute, 10 Kent Ridge Crescent, Singapore 119260, Singapore) ;
  • Xu, Xue-Wu (Data Storage Institute, 10 Kent Ridge Crescent, Singapore 119260, Singapore) ;
  • Li, Lian (Data Storage Institute, 10 Kent Ridge Crescent, Singapore 119260, Singapore) ;
  • Zhang, Guang-Yu (Data Storage Institute, 10 Kent Ridge Crescent, Singapore 119260, Singapore) ;
  • Kumagai, H. (Research Center Asahi Glass Co. Ltd.) ;
  • Hirano, M. (Research Center Asahi Glass Co. Ltd.)
  • Published : 1999.08.01

Abstract

In the present paper, potassium lithium niobate(KLN) crystals have been grown along <001>, <100> and <110> directions by the top seeded solution growth (TSSG) method from Li-richer melts with different compositions. The morphologies of KLN crystals grown along different directions have been studied, and the well-developed facets have been unambiguously indexed using X-ray goniometer and stereographic projection analysis. The growth mechanism and defects such as cracks and inclusions were discussed on the basis of observations of facets on the crystal-solution interfaces. The crystal compositions were determined by a chemical analysis method. The structure and lattice constants of KLN crystals were determined and calculated on the basis of XRD data by using TREOR90 and PIRUM programs. The Curie temperature and optical absorption were determined by dielectric constant peak and spectrum measurements. respectively. The blue second harmonic generation (SHG) characteristics of KLN sample were also investigated using a pulsed dye laser.

Keywords

References

  1. Appl. Phys. Lett. v.11 L.G. Van Uitert;S. Singh;H.J. Levinstein;J.E. Geusic;W.A. Bonner
  2. Mat. Res. Bell. v.5 B.A. Scott;E.A. Giess;B.L. Olson;G. Burns;A.W. Smith;D.F. O'Kane
  3. J. Chem. Phys. v.54 S.C. Abrahams;P.B. Jamieson;J.L. Bernstein
  4. J. Appl. Phys. v.42 A.W. Smith;G. Burns;B.A. Scott;H.D. Edmonds
  5. Ferroelectrics v.2 F.W. Ainger;J.A. Beswick;W.P. Bickley;R. Clarke;G.V. Smith
  6. Japan. J. Appl. Phys. v.12 T. Nagai;T. Ikeda
  7. Japan. J. Appl. Phys. v.17 M. Adachi;A. Kawabata
  8. Mat. Res. Bull. v.24 R.R. Neurgaonkar;W.K. Cory;J.R. Oliver;L. Eric Cross
  9. Adv. Mater. v.3 M. Ouwerkerk
  10. Philips J. Res. v.46 J.J.E. Reid;M. Ouwekerk;L.J.A.M. Beckers
  11. Appl. Phys. Lett. v.62 J.J.E. Reid
  12. Jpn. J. Appl. Phys. v.33 D.H. Yoon;M. Hashimoto;T. Fukuda
  13. J. Crystal Growth v.144 D.H. Yoon;P. Rudolph;T. Fukuda
  14. J. Crystal Growth v.173 M. Ferriol;G. Foulon;A. Brenier;M.T. Cohen-Adad;G. Boulon
  15. J. Mater. Sci.: Materials in Electronics v.9 Q. Jiang;T.P.J. Han;H.G. Gallagher
  16. Japan. J. Appl. Phys. v.8 T. Fukuda
  17. J. Appl. Crystallogr. v.23 P.E. Werner;L. Eriksson;M. Westdahl
  18. J. Appl. Cryst. v.9 P.E. Werner
  19. Phys. Stat. Sol. (a) v.140 B.M. Jin;A.S. Bhalla;B.C. Choi;J.N. Kim
  20. J. Appl. Phys. v.83 V. Srikant;D.R. Clarke