고주파 반응성 스퍼터링에 의한 p형 ZnSe/GaAs 박막성장 및 특성연구

Growth of p-type ZnSe/GaAs epilayers by Rf reactive sputtering and Its characteristics

  • 발행 : 1999.02.01

초록

고주파 반응성 스퍼터링에 의하여 ZnSe/GaAs 박막을 성장하였다. 박막성장을 위한 본 시스템에서의 최적조건을 찾기 위하여 Ar 압력, sputter 입력전력, 기판온도, 기판과 target 간격의 변화 등을 시도하였다. 성장된 결정의 표면과 격면을 전자현미경으로 관찰했을 때 표면이 균일하게 성장되었으며 기판과 박막의 계면이 평활함을 알 수 있었다. DCRC 측정에 의해 격자 부정합에 의한 변형과 부정합률을 구했다. Photoluminescence 측정으로부터 질소를 주입하지않고 성장한 ZnSe/GaAs 시료는 bound exciton $I_2$세기가 $I_1$보다 우세하게 나타났고 bound exciton $I_2$은 깊은 받개준위인 $I_1\;^d$를 나타냄을 확인할 수 있었다. 성장 중에 질소를 주입한 ZnSe/GaAs 시료에서는 $I_1$ 봉우리가 $I_2$봉우리보다 세기가 매우 컸으며 반폭치값도 작게 나타났다. 이때 bound exciton $I_1$의 근원은 질소의 doping으로 인하여 방출되는 봉우리이며 p형 ZnSe/GaAs 박막으로 성장되었음을 확인하였다.

The ZnSe/GaAs epilayers were grown by RF reactive sputtering. In order to obtain the optimum condition of the growth, we have studied the dependence of Ar pressure, input power of sputter, temperature of substrate, and the distande between substrate and target. Through the observation of the grown epilayer via electronic microscope, we confirmed that the layer's surface was uniform and the boundary of the substrate and the layer was well defined. The defotmation of lattice distortion and the distortion ratio were obtained by DCRC measurements. From mrasurements of photoluminescence, in the ZnSe/GaAs sample without injection of $N_2$gas, we found that the intensity of bound exciton $I_2$is stronger than that of $I_1$and the bound exiton $I_1$represents the deep acceptor level, $I_1\;^d$. On the other hand, in the ZnSe/GaAs sample with injection of$N_2$gas, the peak of$I_1$ was much higher than that of the $I_2$and the half width appeared to be narrow. We concluded that the p-type of ZnSe/GaAs epilayer was grown successfully, because of stronger peak of the bound exciton $I_1$due to the $N_2$dopping.

키워드

참고문헌

  1. Appl. Phys. Lett. v.52 T. Yasuda;I. Misuishi;H. Kukimoto
  2. J. Crystal. Growth v.86 A. Yoshikawa;S. Muto;S. Yamaga;H. Kasai
  3. Jpn. J. Appl. Phys. v.28 K. Akimoto;T. Miyajima;Y. Mori
  4. J. Crystal. Growth v.101 M. Migita;A. Taike;M. Shiiki;H. Yamamoto
  5. Appl. Phys. Lett. v.67 P. Baume;J. Gotowski;D. Wiesmann;R. Heitz;A. Hoffmann
  6. Phys. Rev.B v.57 M. Behringer;P. Baume;J. Gotowski;D. Hommel
  7. J. Appl. Phys. v.56 T. Taguchi;T. Yoo
  8. Jpn. J. Appl. Phys. v.20 T. Yao;Y. Makita;S. Maekawa
  9. J. Crystal Growth v.131 J. Reichow;J. Griesche;N. Hoffman;C. Muggelberg;H. Rossmann;L. Wilde;F. Henneberger;K. Jacobs
  10. Appl. Phys. Lett. v.33 W. Stuitus
  11. J. Appl. Phys. v.50 S. Fujita;H. Mimoto;T. Noguchi
  12. Jpn. J. Appl. Phys. v.12 K. Wasa;S. Hayakawa
  13. Sae Mulli v.34 no.6 J.S. Yong;K.K. Koo;S. Lee;S. Y. Kim;S.G. Oh
  14. Ungyong Mulli v.8 no.6 J. Kim;B. Han;S. Kim;H. Park;K. Kim
  15. Ungyong Mulli v.9 no.1 B. Han;S. Kim;J. Jo;S. Chang;J. Choi;J. Lee
  16. Ungyong Mulli v.11 no.4 S.H. Jang;D. Jung;Y. Roh
  17. J. Appl. Phys. v.54 H. Asai;K. Oe
  18. Materials Aspects of GaAs and InP Based Structures V. Swaminathan;A.T. Macrander
  19. J. Crystal Growth v.44 J. Hornstra;W.J. Bartels
  20. J. Appl. Phys. v.54 H. Asai;K. Oe
  21. J. Appl. Phys. v.67 H. Tatsuoka;H. Kuwabara;Y. Nakanishi;H. Fujiyasu
  22. Phy. Rev. v.B6 J.L. Merz;H. Kukimoto;K. Nassau;J.W. Shiever
  23. Phy. Rev. v.B8 J.L. Merz;K. Nassau;J.W. Shiever
  24. J. Crystal Growth v.72 T. Yao
  25. J. Crystal Growth v.104 P.J. Wright;B. Cockyne;P.J. Parbrowk;A.C. Joner;P.O. Brien
  26. J. Appl. Phys. v.51 Y. Shirakawa;H. Kukimoto
  27. Phys. Rev. Lett. v.14 R.E. Halsted;M. Aven
  28. Molecular Beam Epitaxy of Zn-Chalco-genides no.854 T. Yao
  29. Phys. Rev. v.B27 P.J. Dean;W. Stutius;G.F. Neumark;B.J. Fitzpatrick;R.N. Bhargava
  30. Jpn. J. Appl. Phys. v.25 T. Matsumoto;S. Yoshida;T. Ichida
  31. Jpn. J. Appl. Phys. v.29 N. Matsumara;M. Tsubokura;N. Nakamura;K. Miyagawa;Y. Miyanagi;J. Saraie
  32. J. Crystal Growth v.59 W. Stutius
  33. J. Crytal Growth v.101 M. Migita;A. Taike;M. Shiiki;H. Yamamoto