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Mathematical Programming Approaches to GT

Cell Formation: A Comparative Study

Youkyung Won*

—8 Abstract w

This paper compares and evaluates the performances of the two types of mathematical programming models
for solving the machine-part cell formation problem in group technology manufacturing :
relying on surrogate measure such as similarity coefficient and direct formulation seeking to minimize the number
of exceptional elements. New indirect formulation, called the generalized p-median model, is proposed. Unlike
existing p-median formutations, proposed formulation includes the classical cell formation problem in which only
one process plan exsits for each part as a special case. The proposed new formulation can also deal with the
cell formation problem in which alternative process plans exist for a part. The indirect formulation is compared
with a new direct formulation which needs much fewer extra variables and constraints than existing direct
formulations. Some significant findings from comparative experiment are discussed.

indirect formulation

1. Introduction

Group Technology (GT) has been accepted as
an effective approach for improving the pro-
ductivity of batch-type manufacturing system in
which many different products having relatively
low volumes are produced in small lot sizes. The
benefits from applying GT to manufacturing are
summarized in Burbidge [6]. To exploit the be-
nefits of GT, parts are grouped into families and
machines into cells, so that a family of parts can

be produced completely within a cell of ma-
chines. The problem of finding part families and
machine cells in GT manufacturing systems is
known as the cell formation problem in literature.

The main input to the cell formation problem
is the machine-part incidence matrix. The ma-
chine-part incidence matrix is a binary matrix A

where the element

1 if part ; is processed by machine i,
a;=
0  otherwise.

* School of Business Administration, Jeonju University
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The objective of the cell formation is to create
mutually separable machine cells so that the
cells can operate independently with minimum
interaction. The best block-diagonal structure
from the incidence matrix means the best cells
configuration with mimmum intercellular part
moves. However, the cell formation process often
identifies exceptional elements which prevent from
forming independent machine cells by creating
interactions between cells. Exceptional elements
are the results of bottleneck machines that are
needed to process a large number of parts found
in two or more part families, or bottleneck parts
that require processing on machines assigned to
two or more machine cells. Most of numerous
studies on the cell formation are concerned with
eliminating or minimizing the exceptional elements.

Many researchers have addressed the cell for-
mation problem and proposed numerous methods
for grouping machines and parts. Cheng [11],
Chu [12], and Selim et al. [36] provide extensive
classifications and reviews of the cell formation
literature. However, most of the existing appro-
aches to the cell formation problem try to extend
the principles of clustering analysis. Many heuri—
stic clustering approaches usually use similarity
coefficient defined between machines or parts
pair to cluster the machines and parts. Various
similarity coefficients have been suggested in
literature [7, 14, 25, 27, 28,31, 35, and 44].

Mathematical programming approaches try to
find the cells and families by formulating the
problem into linear or nonlinear integer pro-
gramming models. Kusiak [25] suggested linear
integer programming models called the p—median
model seeking to maximize the sum of similarity
coefficients defined between pairs of parts. The

author proposed two separate p-median formu-

e

lations for solving the part family formation
problem with a single process plan for a part
and the one with alternative process plans for a
part. Other formulations to the problem include
the models by Kumar et al. [23], Srinivasan et
al. [37], and Kusiak et al. [26].

However, all the above-mentioned approaches
to the cell formation problem are indirect approa-
ches in the sense that the models use indirect
measures such as similarity coefficients to for-
mulate the problem [42]. In general, there is no
explicit relationship between the similarity score
and the number of exceptional elements which is
a direct measure of inter cellular moves of parts
[43]. Boctor [3,4] first proposed a linear integer
programming model minimizing the total number
of exceptional elements directly and suggested
its variants. Viswanathan [42] and Adil et al. [1]
presented quadratic integer programming models
minimizing the weighted sum of the total number
of exceptional elements outside the clusters and
the total number of zeros within all the clusters
known as voids so as to attain the minimum
inter-cell movements of parts and the maximum
within-cell utilization of machines simultaneously.

Apart from developing the models or algoni-
thms for solving the cell formation problem,
some authors [13, 19,29, and 40] have attempted
to compare and evaluate the effectiveness and
efficiency of the methods proposed so far. How-
ever, most of the existing studies compare the
performances of heuristic clustering or array-—
based methods. Little researches have been
devoted to the performance evaluation of the
mathematical models for the cell formation. One
of the main reasons for this is that most of
mathematical models treating the cell formation

require many binary decision variables. In addi-
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tion, large number of extra continuous variables
and constraints are often needed to linearize
nonlinear terms. Large mathematical model con-
taining many variables and constraints takes
prohibitive computation time to implement the
models directly even on main frame computer.
According to Kaparthi and Suresh [19], mathe-
matical programming approaches have little
applicability to large size problems, for which
heuristic approaches are preferred. But according
to Zhu et al. {45], mathematical programming
approaches have much applicability to medium
size problems. Recently, Wang and Roze [43]
compared the performances of the p-median
mathematical models based on various types of
similarity coefficients. The authors proposed a
modified p-median formulation with much fewer
constraints compared with Kusiak's original p
-median formulation.

However, the authors’ work has some limita-
tions. First, their new p-median formulation
can’t deal with the cell formation in which aller-
native process plans exist for a part although the
new formulation requires very few binary vari-
ables and constraints compared with Kusiak's p
-median formulation. In addition, the authors do
not propose any mathematical models with
which we can compare the performance of the p
-median model. Furthermore, the authors use
only three types of data sets taken from the
literature to evaluate the performance of the »
-median model.

The paper 1s aimed at comparing and evalua-
ting the performances of indirect mathematical
formulation and direct mathematical formulation
to the cell formation problem. Section 2 proposes
a new indirect formulation, called the generalized

p—median model, which uses the new genera-

lized machine similarity coefficient to include the
cell formation problem with a single process plan
for a part as a special case. Section 3 presents a
quadratic integer programming model minimizing
the sum of exceptional elements directly. The
quadratic integer programming model is linearized
with minimal extra variables and constraints as
compared with existing direct formulations.
Section 4 provides performance comparison using
wide range of data sets taken from the literature

and the last section summarizes the conclusion.

2. Indirect formulation : gen
eralized p-median model

Kusiak’s original p-median model [25] uses
the similarity coefficient defined between process
plans of parts to formulate the part family
formation problem. This results in very large
integer linear programming model since the
number of parts included in a cell formation
problem is usually much more than the number
of machines. Therefore, similarity coefficient de-
fined between machines instead of process plans
of parts vields much smaller integer programm-
ing model that can be solved within moderate
computer runtime. This modification has been
suggested by Wang and Roze. In this section, a
new p-median model which is a generalization
over Wang and Roze's model as well as Kusiak's
model is constructed. The new p-~median model
use generalized machine similarity coefficient to
formulate the machine cell formation problem.

New similarity coefficient between two machines
h and 7 is defined by

S o ij) i hEQ =1, ... m
* =1
S = (1)

0, otherwise
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where

sw = generalized similarity coefficient between
machines % and ¢
m = number of machines

» = number of parts

o(h. z',j):{ 1, if @yr = a;;=1 for some r € R;
0, otherwise.

machine 7 in plan »

1, if part ; requires processing on
Ajiy = [ -
(0, otherwise.

R;=set of process plans of part j.

From the above definition, o (%, 7, 7)=1 in-
dicates that if some process plan of part ; uses
both machines % and i the number of common
parts processed by those machines is counted as
one for that part even though remaining process
plans of part ; also use both machines. This
idea follows from the basic assumption of the
cell formation problem with alternative process
plans that in final solution only one process plan
is selected for each part. We can then use the
generalized machine similarity coefficient to deal
with not only the cell formation problem in
which only a fixed process plan exists for a part
but also the cell formation problem in which
alternative process plans exist for a part. The
term generalized is used in this context.

In order to construct the new p-median model
using the generalized machine similarity coeffi-

cient, define the variable

L, hoi=1,...,m

1 if machine % belongs to cell
Xpi = [
0 otherwise.

The generalized p-median model can then be
stated as

(GP)

Max ﬁl g[s}',,-xh,- 2)

s.t. 2196;,,-:1, h=1, .., m 3
Z Xw = Loy, i=1, ..., m (4)
lem < Uy, i=1, ..., m (5)
glxu-:l) 6
x;=0or 1, h,i=1, .., m. (7)

The objective is to maximize the sum of
machine similarities. Constraint (3) ensures that
each machine belongs to exactly one machine
cell. In constraints (4) and (5) L. and U, re-
present the mimimum and the maximum numbers
of machines allowable to each cell, respectively.
The lower cell size restriction is added to avoid
singleton machine cells. Note that in constraint
(4) at least L, machines can be clustered with
machine 7 only when x;=1. Similarly, constraint
(5) ensures that at most U/, machines are cluster—
ed with machine 7 only when x;=1. Constraint
(6) specifies the required number of machine
cells. Constraint (7) ensures the binary solution.

The generalized p-median model (GP) is much
smaller problem than the original p-median
model in terms of the number of constraints as
well as the number of binary variables. The
original p~median model based on the similarity
coefficient betwe&en process plans of parts con-
tains (,21“?/") " binary variables, whereas the
generalized p-median model contains only m®
binary variables. This leads to a significant
reduction of binary variables for large-scale cell
formation problems containing large number of
parts. Moreover, the model (GP) contains only a
total of 3m+1 constraints} which is very small
compared with (Z})IR,I)H+<Z:1!R,I>+1 cons
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traints in the original p-median model. Wang
and Roze's formulation does not contain the
lower cell size constraint (4) that is needed to
avoid singleton machine cells. Therefore, the ge-
neralized p-median model (GP) contains the
same number of binary variables and constraints
as in Wang and Roze's formulation if the cons-
traint (4) is omitted from the formulation.

3. Direct formulation

3.1. Quadratic integer programming model

In this section a quadratic integer programming
model is developed for simultaneous grouping of
machines and parts. The proposed quadratic in-
teger programming model is aimed at minimizing
the sum of exceptional elements. In order to
develop new direct formulation for minimizing
the sum of exceptional elements, define the follo-
wing binary variables :

_{ 1 if machine ¢ belongs to cell &
X = .
0 otherwise.

1 if part 7 is assigned to cell (family) /

y'1:{ 0 otherwise.

Assuming that under a given machine—part
incidence matrix A = ( ;) machine / processes
part j, an entry «;=1 becomes an exceptional
element if and only if machine 7 and part ; be-
long to mutually different cells, e, x,=y;=1

for k# 1 Therefore, the sum of exceptional
elements is given by

Sl /21 Z] ,,_,ii;#k aiXuYi (8)

Then, the model which seeks to minimize the

sum of exceptional elements is as follows :

(Q0)  Min (8)

s.t. z:[ xp=1, i=1, .., m 9
L.< fl xw<Un k=1,...p  (10)

21)/,-,:1, =1, ... n (1D

L/g ]Sly,»,SU/, 1:],--.,17 (12)
Za ¥y=0 or 1 for all 4, j, &k L  (13)

The objective function (8) is equivalent to the
one given in the Boctor model. Constraint (9)
indicates that each machine is assigned to
exactly one cell. Constraints (10) are necessary
to satisfy the upper and lower limits on cell size.
Constraint {11) ensures that each part is also
allocated to one and only one cell (family).
Constraints (12) impose the upper and lower

limits on family size. L, and U, represent the

minimum and the maximum numbers of parts
assigned to each cell (family), respectively.
Constraint (13) guarantees the binary solution.
The family size constraint set is added to
prevent abnormally small or large families from
being formed. This leads to producing more
compact cells and families compared with the
generalized p-median model (GP) which con-
tains only the cell size restriction. Existing
approaches to direct formulation except Boctor’'s
formulation use subjective weighting factor to
minimize the weighted sum of voids and excep-
tional elements [1, 42]. In those models, changing
weights are selected by the cell designer. As a
result of this, however, the final objective value
of the models does not represent the actual inter
cellular moves of parts. In contrast, the objective
value of the new formulation really represents

the inter cell part moves.
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Relative to the cell and family size constraints,
Boctor’s formulations include only cell size cons—
traint, but the model (Q0) includes additional
restriction on the family size. Therefore, the
quadratic model (QQ) is entirely equivalent to
Boctor’s formulations adjusted with family size

constraint.

3.2 Efficient linearization of (Q0)

Quadratic terms in the objective function of
(Q)) can be linearized by using Oral and
Kettani’'s efficient linearization technique [33l.
According to the authors’ technique, the qua-
dratic term in (Q0) can be linearized with extra

continuous variable z, as follows :

(QL)

Min 121 ZIZ,}? (14)
st (9~(13) and

Zp = /2] dei/%'/#( glai/)(l_xik),

=1, ..., m; k=1, ..., p

(15

Zip 20, 121, ey W, kzl, ey D (16)

Then the linear formulatﬂm (QL) is equivalent
to the quadratic integer formulation (Q0) and
hence equivalent to Boctor’s formulation adjusted
with family size constraint.. Note that the inte-
grality of variable z; is guaranteed since in
constraint (15) the right-hand part of the ine-
quality is always integral and all the coefficients
of z, in the objective function are 1. The
variable z, indicates the number of exceptional
elements generated by machine 7 assigned to
cell % The linear model (QL)contains only mp

extra contimious variables and the same number

I"i?‘

o

of extra constraints. Recalling that p< {m << n
in a typical cell formation problem, computational
efforts required additionally are maintained mi-
nimal in terms of the model size.

The model (QL) is compared with Boctor's
1996 formulation. Both models have the same
number of binary variables. While the Boctor
model contains p|Al| continuous variables and
m+n+2p+pim+1AD) constraints, the model
(QL) contains pm continuous variables and »+
n+2p+ pm constraints. Note that the number of
extra continuous variables and constraints needed
by the model (QL) are very small compared with
those needed by Boctor's formulations since
pm < < p|lAl. In order to solve the problem in
Chandrasekharan and Rajagopalan [8] with m=
40, =100, p=10 and |A|=422, for example,
Boctor's 1996 formulation needs 4220 continuous
variables and 4780 constraints, whereas the
proposed formulation needs no more than 400

continuous variables and 560 constraints.

4. Comparative experiment

In this section, the performances of both the
indirect mathematical formulation and the direct
mathematical formulation are compared. Although
several measures have been presented for eva-
luating the performance of cell formation me-
thods, computation time and the number of
exceptional elements which have been considered
to be the most important by several authors are
selected as the criteria of comparison.

While the direct formulation presented in the
previous section can find the cells and families
simultaneously, the p-median model requires
additional procedure assigning the parts to the
corresponding machine cells once the cells are
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(Table 1> Computational result for the generalized p-median model and the new direct formulation
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Problem source Pro't’)]em » U. U, C}?IT (seconds) # of exceptions
size GP QL GP QL.

1. Camie(1973a)[7] 18x24 3 7 10 482.56 * 20 18
2. Carrie(1973b)(7] 0235 4 6 10 6.32 2645 2 2
3 De Witte(1980(14] 1219 2 9 12 413 2.08 9 9
4. King(19830a){20] 14x24 3 6 12 52.01 0.57 1 0
4 B 10 13.67 W64 7 2

5 King(1930b)(21] 16543 3 7 20 11.07 31774 e 17
4 6 17 14.79 * 30 40

6. King(1932)[22] 30%90 3 12 Al * * 71 8l
7. Mosier{1985)131] 2020 2 14 14 1.92 594,33 31 23
8 Stanfel(1985a)[38] 14 =24 4 H 10 2.48 5072 6 2
9. Stanfel(1950)[34) 30250 ER G| x 592 1 0
D 18 ) * * 24 26

10. Stanfel(19850)[33] 3050 30018 05 * * 40 %
ER R * * 46 41

11, Kumart 19863231 9390 R 9N 3097 %6 13
3 10 10 0.78 * 34 40

12 Kumar( 1987)[24] 3041 2R 247 16,19 13 3
3 14 20 * * 11 5]

4 12 15 * 10 17

R 10 10 * 10 29

13. Chandrasekharan(1987)[&] 40> 100 3 12 30 * * 117 99
9 9 ) ® * 70 202

10 6 20 * * 43 164

14, Tabucanon(1987)39] 3040 4 10 14 * * 2 39
5} 8 12 * * 24 37

16. Chandrasekharan(1989b)[9] 2440 7 5 3 276 * 10 20
17. Chandrasekharan( 1989¢)[9] 24%40 7 5 8 1.87 * 20 61
18 Chandrasekharan(1939d)[9] 24740 7 5 3 1.8 20 61
19, Chandrasekharan(1989%){9] 24740 6 6 12 3140l 47 a2
20. Chandrasekharan{ 1939D)[9] 24240 6 7 12 266.75 * 57| 58
21. Chandrasekharan(1989)[9]  24%40 5 8 12 47 * a3 59
22 Seifoddinit 1989a)(34] 5220 2 313 007 0.65 7 5
23 Seifoddini( 19890)[35] Hxz 2 T M 682 061 o 5
3 4 10 0.43 15.34 10 10

24. Harhalakis(1990)[16] 20720 4 7 3 417N * 11 29
5 6 6 6.33 ® 14 31

25, Srinivasan(1990)[37] 16 %30 3 7 14 0.30 876.83 16 16
4 6 10 040 19 19

26, Ventura(1990)[41] 2727 2 17 17 1572 17844 A 23
27 Askin(1991){2] 14%24 3 6 12 6.80 051 4 0
4 4 10 4.8 72.69 6 2

28 Boe(199D15] 200435 3 10 20 3.66 24 24
4 D 12 0.77 * 3H 69

29 Kao(1991)[18] 24X30 7 D 6 3278 #* 12 41
30. Moon(1992)[30] 12419 4 4 6 296 * 11 11
31 Chen(199)[10] 20260 4 10 30 44552 * 25} 31
D 5 15 1236 * 30 2

32 Gindv(1995)(15) 45 X120 8 15 40 * * 40 89
9 12 30 * * 48 60

10 9 20 * * s 102

33 Joines(1996)17] 20235 3 10 20 71151 20.66 2 1
4 3 10 1.24 ® 2 42

3 Nair(19960)[32] 46x 100 3 15 40 * * 149 16
9 10 30 * * 181 210

10 6 20 * * 151 253

Note : * indicates that the problem takes more than 3600 CPU seconds to solve optimally.



(Table 2> Contingency table showing comparative advantage of both formulations

# of exceptional clements .
CPU time p-median formulation ¥ direct formulation sum
p-median formulation t 36 12 48
direct formulation 3 5 8
sum 39 17 56

Note : T indicates the category in which the p-median formulation produces the solutions that are equal to or better than
the direct formulation in terms of the computation time.
T indicates the category in which the p-median formulation produces the solutions that are equal to or better than

the direct formulation in terms of the number of exceptional elements.

obtained. Unlike the objective function value of
the direct formulation, the objective function
value of the p-median model provides no infor-
mation on the number of exceptional elements. In
order to minimize the sum of exceptional ele-
ments, a part is assigned to the cell in which
that part needs most operations.

In order to evaluate the performance of both
mathematical models, 34 medium-sized incidence
matrices are taken from the literature, <Table 1>
shows the list of the data set selected. In solving
the models, the lower limits to the cell and
family sizes are set equal to 2. For each formu-
lation, 56 optimization problems have been solved
using CPLEX version 21 on an HP 9000/715
workstation. Time limit to each problem is set
equal to 3600 CPU seconds. For each formu-
lation, CPU time in seconds and the number of
exceptional elements are reported in <Table 1>,
Contingency <Table 2> summarizes comparative
advantage of both formulations in terms of the
CPU time and the number of exceptional elements.

From the result shown in <Table 1> and
<Table 2> some interesting findings deserve to
be mentioned. First, it can be noticed from
<Table 2> that in terms of computation time the
p—median formulation obtained the solutions that
were equal to or better than the direct formu-
lation for 48 problems (about 86%) out of 56

problems and in terms of the number of excep-
tional elements the p-median formulation obtained
the solutions that were equal to or better than
the direct formulation for 39 problems (about
70%) out of 56 problems. It can also be noticed
that only for 5 problems (about 9%) out of 56
problems the direct formulation produced the
solutions that are strictly better than the p-
median formulation in terms of both the compu-
tation time and the solution quality. This implies
usefulness of the generalized p-median mathe-
matical model for medium-sized cell formation
problems.

Second, as the value of p increases the com-
putation time of direct formulation increases
drastically since the number of binary variables,
(m+ n)p, increases in proportion to the value of
p. However, as the value of p increases the p-
median formulation took decreasing computation
time for 9 problems except 2 problems (problems
5 and 12) taking increasing computation time.
Noting that the number of binary variables in
the p-median model does not increase even if
the value of p increases, this result gives very
interesting implication in implementing the p-
median model. It has been commonly reco-
mmended that in implementing the p-median
model, cell designer should start with a small

value of p and resolve the model for increasing
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values of p until satisfactory solution is found
[24, 36]. But the result from comparative experi—
ment presented in this paper leads to a policy
contrary to such existing recommendation. New
recommendation for implementation of the p
-median model is that cell designer should start
with a sufficiently large value of p to find rough
cells quickly and resolve the model for decrea-
sing values of p until satisfactory solution is

found.

5. Concluding remarks

This paper compares the performances of in-
direct mathematical formulation and direct ma-
thematical formulation for solving the cell
formation problem in group technology. New
indirect formulation, called the generalized »
-median model, based on the machine similarity
coefficient is proposed to deal with the cell
formation problem in which alternative process
plans exist for a part as well as the cel
formation problem in which only a fixed process
plan exists for a part. In addition, new direct
formulation is developed which contains much
fewer variables and constraints as compared
with existing direct formulation.

The results from comparative experiment
show two significant findings : first, the genera—
lized p—median formulation is of hetter applica-
bility to medium-sized cell formation problem
than direct formulation and second, on the con-
trary to existing policy which attempts to resolve
the model for increasing values of p starting
from a small value of »p until satisfactory
solution is found, cell designer is recommended
to resolve the model for decreasing values of p

starting from a sufficiently large value of p.

The direct formulation proposed in the paper,
however, gives worse solutions than the genera-
lized p-median formulation in terms of the number
of exceptional elements and comuptation time for
most problems since its linear model still
contains many binary variables. Development of
efficient linear model containing fewer binary

vanables remains as another future research area.
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