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Transverse spatial laser beam patterns spontaneously formed
in the feedback system with a liquid crystal
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The formation of spontaneous transverse optical patterns was investigated in a single feedback
mirror system using nematic liquid crystals as nonlinear optical media. By varying the size of an
input beam and the feedback distance, we obtained various interesting transverse optical patterns
as well as the hexagonal patterns which are predicted theoretically assuming plane wave input. We
can explain theoretically these characteristics of various patterns by introducing a ratio of the beam
half width and spatial wavelength of the patterns. We have observed that as this ratio increased,
the number of spots constituting the patterns also increased. Finally the patterns evolved into the

successive hexagon in the transverse plane.

I. INTRODUCTION

While a laser beam propagates through a nonlinear
medium, the beam can be distorted due to self-focusing
or self-diffraction, etc. After spontaneous transverse
patterns of the laser beam were first predicted theoret-
ically first ten years ago, similar optical patterns have
been observed in several experiments {1-3]. In the feed-
back system consisting of a slice Kerr medium and a
single mirror, the transverse hexagonal [4-6] patterns
formed spontaneously were predicted theoretically as-
suming plane input wave. O(2) symmetry breaking of
the input beam was studied in the simulation, which
assumes Gaussian shape of the laser beam [7]. Also
several studies have been carried out in the feedback
system using nematic liquid crystal [8-11] as a nonlin-
ear medium.

In the present paper, we constructed the feedback
system with a single mirror reflecting the forward beam
in order to understand the properties of the transverse
patterns. It was shown that, under the cylindrical box
approximation of the Gaussian input beam, the prop-
erties of the transverse spatial patterns were predicted
theoretically by introducing a parameter 7, the ratio of
a half-width and a spatial wavelength A of the trans-
verse patterns. Wy is defined as the radius where the
intensity decreases to 1/e? of its maximum. We can
obtain a broad range of n by varying the feedback
distance and controlling the input beam width. The
theoretical description of the dihedral patterns [8] in
Bessel function representations was analyzed further
and in detail as a function of  about the boundary

conditions and the threshold intensity. As n increased,
the experimental data were compared with the succes-
sive hexagon with six-fold symmetry in the 2-D plane
which is predicted assuming an plane input wave.

II. THEORY

The Talbot effect which was first discovered by H.
F. Talbot in 1836 can explain simply the formation of
the transverse patterns based on the plane input wave.
In the case of a feedback system, the light propagat-
ing through the nonlinear medium undergoes a small
phase modulation due to the nonuniformity or fluc-
tuation of the medium. The phase-modulated wave
then propagates toward the mirror and is reflected back
to the medium to become an amplitude-modulated
wave. The feedback loop is closed when the reentering
beam changes into a phase-modulated beam propagat-
ing through the medium again. Based on the Talbot
effect, according to the feedback distance, the trans-
verse patterns are built up with the spatial frequency
as follows;
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where d is the feedback distance and A is the wave-
length of the beam. In the case of a liquid crystal it is
well known that n = 0 [6].

Now let us describe the feedback system in general.
From the Maxwell equations, two equations describ-
ing the propagation through the liquid crystal cell and
in free space can be derived using the slowly varying
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envelope approximation. Especially when the beam
propagates in the liquid crystal cell we should consider
the intensity dependent refractive index which is re-
lated as n(I) = ng + nel. If the electric field of the
beam entering the cell is Er and the electric field of
the beam reflected by a mirror is Eg in front of the
cell, the two equations for Er and Eg are [4],
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where kg = 2 and I is the intensity of the input beam.
In Eq.(2) if ny > 0 it is the case of self-focusing and
if ny < 0, the self-defocusing case. The liquid crystal
which is used in the present experiment is known to be
self-focusing material (ng > 0). Eq.(2) describes the
propagation through the cell and Eq.(3) describes the
propagation in free space.

Another equation describes a nonlinear process gen-
erated from the interaction between the laser beam
and the medium. In the case of a liquid crystal as
a Kerr slice and from the well-known Erickson-Leslice
equation [12] which describes the reorientation of the

director exposed in the external field, the variation of
the transverse refractive index of the liquid crystal at
the center of the cell can be derived as follows,

T,aai?—gz Vino + 7 = Kk E" (4)
where 7, is the relaxation time and k represents the
amount of the nonlinearity and V2 is the two dimen-
sional Laplacian perpendicular to the direction of the
beam propagation. £ is called the diffusion length,
which is much greater than the wavelength of the laser,
so the optical interference at the cell between the for-
ward and backward beam can be neglected. Eq.(2),
Eq.(3) and Eq.(4) are general equations describing the
feedback system using a liquid crystal as a Kerr slice
medium.

In Ref.8 it was reported that, under the cylindri-
cal approximation with input beam of radius Wy, the
transverse patterns could be represented as a superpo-
sition of the Bessel functions as follows,
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where Ng 5, is the spatial part of 7y and ¢ is the spatial
frequency of the patterns and Ji,,, K, are the first and
second kind of the Bessel function respectively. m is an
integer and A, B are constants and can be determined
by the boundary conditions.

Here we defined two new parameters 7, the spatial
frequency times the radius of the input beam which is
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FIG. 1. The feedback system. The forward beam
through the sample (S) reenters it after being reflected by
a mirror (M). fo : tilt angle, d : feedback distance, ¢ :
thickness of the sample.

assumed as a cylindrical box, and «, the inverse of the
spatial frequency multiplied by the diffusion length of
the liquid crystal as follows,

W,
n=qWo =2r—2 (6)
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Using additional boundary conditions, continuities
of Mg s and the derivative of fig 5, at p = Wy, we can
get the following relationship which includes the new
parameters 77 and o.
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FIG. 2. Graphical solutions according to Eq.(8) for var-
iousm. () m=0,(b)m=2,(c) m=3, (d) m =4, (e)
m =5, (f) m = 5. Note that experimental data support
that the third group is meaningful.
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As in Fig.2 for a given m we can obtain graphical so-
lutions by plotting numerically the left and right side of
Eq.(7) as a function of 7 in the case of Wy = 1.07 mm
and £ = 40 um. Each group of solutions which are
denoted with the same mark increase as mode number
m increases, except m = 0. In order to determine the
meaningful one of the infinite group of solutions, we
should consider the threshold intensity curve which is
derived from 7ig¢, the time part of @g. The solution
of the time part has a form of 7ig7 ~ €~ 7 where the
constant 7 is given as (8],

(7)

T= T (8)
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where k' = 2xk0‘—f~r’- and R is reflectance and E' is a

reduced electric field normalized to Fredric transtion
field. If 7—! > 0, the solution decays exponentially and
the shape of the beam is stable as the time increases.
But if 77! < 0, the solution increases exponentially
and the shape becomes unstable. Thus we determined
the threshold intensity E'?, where the formation of the
patterns begins. From 7! = 0, we obtain,
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;From Eq.(9) we can calculate 5 values in terms of
the feedback distance d or half-width Wy by minimiz-
ing the threshold intensity for a fixed Wy and d. Af-
ter several fixed W, are used, we can obtain a graph
like Fig.6 of n as a function of feedback distance d
by minimizing the threshold intensity. Especially for
Wy = 1.07 mum, when the curve (b) in Fig.6 was com-

436 Ll
[
550
500 4

£50 -]
400

550-1
300 o *

fer gt

Latd)

T e J.__,ﬂ,_—.—t—-— oy “l)

200 4 Q/

504

| SN SR R S AN (Y S S A A A S
4 6 8 i 12 14 [ i9 il

terdbock(cm)

FIG. 3. Spatial wavelength (a) based on the Talbot ef-
fect in Eq.(1) with n = 0 (b) for Wp = 1.07 mm (c) for
Wo = 1.28 mm in the experiment as a function of feedback
distance d. (d) & (e) show that half width of the spots
increases for Wy = 1.07 mm, Wy = 1.28 mm respectively.
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FIG. 4. Near field and far field for various dihe-
dral patterns. (a) ring [Jo(p)] : d = 8.3 cm,
Wo = 1.07 mm, Linpue = 10.0 W/em?, n = 14.7 (b)
two spots [J2(p)Cos(2¢)] : d = 11.0 cm, Wy = 0.83 mm,
Linput = 23.1 W/em?, n = 9.5 (c) triangular [J3(p)Cos(3¢)]
. d = 18.0 cm, Wy = 1.07 mm, Linpyt = 24.2 W/cm?,
n = 11.0 (d) tetragonal [J4(p)Cos(4¢)] : d = 12.5 cm,
Wo = 1.07 mm, Linpue = 28.2 W/cm?, = 124
(e) pentagonal [Jo(p) + Js5(p)Cos(5¢)] : d = 9.5 cm,
Wo = 1.07 mm, Linpu: = 15.7 W/em?, 5 = 15.3 (f) hexag-
onal [Jo(p) + Je(p)Cos(6¢)] : d = 16.5 cm, Wy = 1.61 mm,
Linput = 16.7 W/em?, n = 21.0.

FIG. 5. Hexagonal pattern in 2 - Dimensions. (a)
d=8.0cm, Wo = 1.45 mm, Linput = 20.8 W/em?, =215
(b) d = 8.0 cm, Wo = 1.61 mm, Linpu: = 15.2 W/cm?,
n = 25.1 (c) far field corresponding to (b).

pared with the graphical solution in Fig.2, we can tell
that the third group solution has a clear meaning. We
have to consider the graphical solutions for each mode
as a representative value, so we expect that experimen-
tal values of 1 were distributed about this representa-
tive value. The marks in Fig.6 are experimental data
and will be discussed in a later section.

We deduce that the dimensionless parameter 7 is
closely related to the spatial pattern and as 7 increases,
both by magnifying the input beam half width and
by shortening the feedback distance, the mode m of
transverse patterns also increases in order. Therefore
we can obtain various dihedral patterns by controlling
7.
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FIG. 6. Relation between 7 and d derived from thresh-
old curve. (a) Wo = 0.83 mm, (b) Wy = 1.07 mm, {(c)
Wo = 1.456 mm, (d) Wo = 1.61 mm. Dots represent
experimental data. Circle : Wy = 0.83 mm, Square :
Wo = 1.07 mm, down triangle : Wy = 1.45 mm, up triangle
: Wo = 1.61 mm.

III. EXPERIMENT AND RESULT

In the experiment the nematic liquid crystal used
as a nonlinear medium was homeotropically arranged
between two glass plates coated with HTAB (cetyl-
trimetyl-ammonium bromide) solution. A linearly po-
larized Ar-ion laser with wavelength 514.5 nm and
Gaussian transverse intensity distribution has been
used. We found that the radius at which the inten-
sity of the laser falls to 1/e? from its maximum is
1.07 mm. As in Fig.1 we tilted the sample to make
the angle 6y = 45° between the direction of the propa-
gation of the beam and the normal plane vector of the
glass plate. The reflectance of the feedback mirror was
found to be R = 0.87 and the signals leaking through
the feedback mirror were captured by a CCD camera
just behind the mirror. The cell thickness was about
120 pm and so the diffusion length £ is much greater
than the wavelength of the beam. Putting a lens with
focal length f = 20 cm just behind the feedback mir-
ror, the far field images corresponding to each near field
were obtained at the focal plane. For a broad range of
7, we moved the feedback mirror from d = 5 em to
d = 20 em and used several convex lenses which have
several different focal lengths. The original widths was
Wy = 1.07 mm and the modified half width were mea-
sured at Wy = 0.83 mm, 1.28 mm, 1.45 mm, 1.61 mm.
However, the modification does not affect the Gaussian
shape during the experiment.

In Fig.3 the spatial wavelength A of the patterns as
a function of feedback distance d were compared with
theoretical predictions based on the Talbot effect de-
noted as (a). As the feedback distance increases, A also
increases gradually but the change of measured spatial
wavelength is slower than for the Talbot effect. Also

it is considered that the difference which is large for
short feedback range comes from the Gaussian shape
of input beam. Fig.3 shows that A does not depend on
the size of the input beam for two different half widths
Wo = 1.07 mm and Wy = 1.28 mm. Therefore this
indicates that if we enlarge the size of the input beam,
we may expect additional spots in the outer region,
maintaining spatial wavelength for a given d. Since the
spatial wavelength increases with feedback distance re-
gardless of input beam size, the dimensionless parame-
ter ) in Eq.(7) is expected to increase as d decreases for
a given input beam. We also found that the intensity
distribution of spots constituting the transverse pat-
terns has a Gaussian shape the same as input beam.
The measured half width of the spots also increases
very slowly with feedback distance but is independent
of d, like A.

We have obtained various clear dihedral patterns
from two spots to hexagon and measured spatial wave-
length and input beam half width about each trans-
verse patterns in Fig.4. The values of 7 were found to
be 14.7 for ring, 9.5 for two spots, 11.0 for triangle, 12.4
for rhombus, 15.3 for pentagon and 21.0 for hexagon
respectively. The dihedral patterns with higher mode
m (m < 6) have also higher values of 77 as expected in
the theory. The value n of the hexagon was measured
as twice as that of two spots. Because the spacing of 7
between neighboring modes was large for higher m, the
region of 7} forming a pattern with mode m is expected
to widen. When these measured 7’s were compared
with graphical solutions in Fig.2, we found that the
nearest group is the third one for Wy = 1.07 mm.

When we increased n further above the value of
hexagon formation, the dihedral patterns evolved into
successive hexagonal patterns in the transverse plane
as in Fig.5. The measured values of 7 in Fig.5 are 21.5
for (a) and 25.1 for (b) and these values are greater
than for other dihedral patterns in Fig.3. We plot-
ted 1 as a function of d by minimizing the threshold
intensity for several values of Wy in Fig.6 and also de-
noted experimental data, which agreed well with the
theoretical curve.

On the other hand, we investigated several dihedral
patterns to compare with theoretical Bessel representa-
tion according to Eq.(5) and we also observed far field
images as well as near field ones as shown in Fig.4. We
did not observe the precise tetragonal pattern in Bessel
representation and the shape of the four spots consti-
tuting the observed pattern is similar to a rhombus not
a square with a central spot. Other dihedral patterns
agreed well with Bessel representation. While theoret-
ically we may expect the above hexagon patterns, we
did not observe those patterns, which is considered to
be the limit of the cylindrical approximation of Gaus-
sian beam. In Ref. (7] it was reported that the far field
has six-fold symmetry regardless of the near field pat-
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terns in a simulation with the Gaussian shape of the
input beam. But on the contrary in our experiment
the far field images, which are Fourier transforms of
near field images, have the symmetry of each near field
pattern. Except for triangular and hexagonal patterns
other dihedral patterns do not have six-fold symmetry.
The far field image of the pentagon has five additional
dimmer spots between neighboring bright spots, which
are built up from the phase difference between wave
vectors representing five spots in near field patterns.
And the far field image corresponding to tetragonal
has also four-fold symmetry.

IV. CONCLUSION

We investigated the spontaneous transverse patterns
in the feedback system using a nematic liquid crys-
tal as a nonlinear medium. Under the cylindrical ap-
proximation of the input beam intensity we can ex-
plain the properties of the various transverse patterns
by introducing a parameter 7, a ratio between input
beam half width and spatial wavelength of the pat-
terns. It was found that as we increased n the spon-
taneous transverse patterns changed in turn from two
spots to hexagon and finally transferred into successive
hexagons in the 2-D plane. From this phenomenon
we deduced that for the dihedral patterns which in-
clude from two spots to hexagon, the Gaussian shape
of the input beam with limited size strongly affected
the structure of the patterns. For large 7, we can ob-
tain the successive hexagonal patterns in 2-D because
of the approximation of the laser beam to plane wave
in the region around center where the variation of in-
tensity is very small. On the other hand, the various
transverse patterns are understood as a portion of suc-
cessively and uniformly distributed hexagonal pattern

in the transverse plane. The larger the region above
the threshold intensity for forming spontaneous pat-
terns gets, the more spots appear constituting the pat-
tern making a proper symmetry.

However, when the laser intensity increased further,
the concentric multirings which were observed in the
case of a single pass through liquid crystal above the
Fredric intensity formed in the experiment. The mul-
tirings include traces of the dihedral patterns. The
number of rings increased to a maximum of about fif-
teen as laser intensity increased.
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