Photoinduced Electron Tansfer of Microperoxidase-8

  • Su, Chien-Hua (China Institute of Technology and Commerce) ;
  • Lin, Ren-Jay (Dept. of Chemistry, National Taiwan Normal Univ.) ;
  • Chang, I-Jy (Dept. of Chemistry, National Taiwan Normal Univ.)
  • Published : 1999.05.01

Abstract

Microperoxidase 8 (MP8) has been prepared by sequential hydrolysis of cytochrome C by pepsin and trypsin. This five-coordinated heme-octapetide fragment provides a uniques structure to evaluate the electronic coupling efficiency to the iron through axial position and porphyrin edge. At alkali pH, Ru(bpy)2(im)22+ is completely quenched in AcMP8Ru complex . Transient kinetics measurement showed the decay rate to be ~1 $\times$1012S-1. Ruthenium bipyridine complex with a carboxyl group substituted bipyridine has been prepared adn reacted with MR 8 to yield N-terminus bound RuMP8 complex. The luminescence decay rate has been measured as 1 $\times$109S-1. By using semiclassical electron transfer theory, we found the electron transfer efficiency through axial positioin of iron prophyrin is as good through prophyrin edge.

Keywords

References

  1. Cytochrome c: A Multidisciplinary Approach The hemepeptides from cytochrome c: preparation, physical and chemical properties, and their use as model compounds for the hemoproteins Adams, P. A.;D. A. Baldwin;H. M. Marques;R. A. Scott(ed.);A. G. Mauk(ed.)
  2. Annu. Rev. Biochem. v.65 Electron transfer in proteins Gray, H. B.;J. R. Winkler
  3. Chem. Rev. v.92 Electron transfer in ruthenium-modified proteins Winkler, J. R.;H. B. Gray
  4. J. Phys. Chem. v.100 Ultrafast charge sepoaration and driving dependence in cyclophane-bridged Zn-porphyrin-quinone molecules Haberle, T.;J. Hirsch;F. Pollinger;H. Heitele;M. E. Michel-Beyerle;C. Anders;A. Dohling;C. Krieger;A. Ruckemann;H. A. Staab
  5. Chem. Rev. v.92 Photoinduced electron transfer in supramolecular systems for srtificial photosynthesis Wasielewski, M. R.
  6. Inorg. Chem. v.36 Synthesis and physical characterization of novel heme-based model systems for photoinitiated electron transfer. 1. Complexation of a RuPro-His bifunctional peptide and microperoxidase-11 Fan, B. D.;L. Fontenot;R. W. Larsen;M. C. Simpson;J. A. Shelnutt;R. Falcon;L. Martinez;S. Niu;S. Zhang;T. Niemezyk;M. R. Ondrias
  7. J. Porphyrins and Phthalocyanines v.1 Supermolecular complexation of porphyrin and quinone with two coorination bonds and intramolecular electron transfer Imahori, H.;K. Yamada;E. Yoshizawa;K. Hagiwara;T. Okada;Y. Sakata
  8. Photochemistry of Polypyridine and Porphyrin Complexes Kalyanasundaram, K.
  9. Inorg. Chim. Acta v.89 Acid-base chemistry of some 1,2,4-triazole and imidaxole complexes of ruthenium(Ⅱ)bis (2,2'-bipyridyl) Long, C.;J. G. Vos
  10. Int. J. Peptide Protein Res. v.38 Synthesis of redox derivatives of lysine and related peptides containing phenothiazine or tris(2,2'-bipyridine)ruthenium(Ⅱ) Peek, B. M.;G. T. Ross;S. W. Edwards;G. J. Meyer;T. J. Meyer;B. W. Erickson
  11. J. Inorg. Biochem. v.27 Hemes and hemoproteins. 1: Preparation and analysis of the heme-containing octapetide(Microperoxidase-8) and identification of the monomeric form in aqueous solution Aron, J.;D. W. Baldwin;H. M. Marques;J. M. Pratt;P. A. Adams
  12. J. Phys. Chem. v.93 Resonance raman characterization of the heme c group in N-acetyl-microperoxidase: athermal intermediate spin-high spin state mixture Wang, J. -S.;H. E. van Wart
  13. J. Chin. Chem. Soc. v.45 Acid-Base Properties of the Ground and Excited States of Ruthenium(Ⅱ) tris(4'-methyl-2,2'-bipyridinc-4-carboxylic acid) Su, C. -H.;I-Jy Chang
  14. Iron Porphyrins, Part Ⅰ, Physical Bioinorganic Chemistry Series Makinen, M. W.;A. K. Chung;A. B. P. Lever;H. B. Gray
  15. Biochem. Biophys. Acta. v.811 Electron transfer in chemistry and biology Marcus, R. A.;N. Sutin
  16. J. Am. Chem Soc. v.104 Oxidation-reduction equilibrium of cytochrome $b_5$ Reid, L. S.;V. T. Taniguchi;H. B. Gray;A. G. Mauk
  17. Inorg. Chem. v.29 Electrochemical parametrization of metal complex redox potentials, using the ruthenium(Ⅲ)/ruthenium(Ⅱ) couple to generate a ligand electrochemical series Lever, A. B. P.
  18. J. Am. Chem. Soc. v.101 A comparison of the rates of electron trnsfer exchange reactions of ammine complexes of ruthenium(Ⅱ) and-(Ⅲ) with the predictions of adiabactic, outer-sphere electron transfer models Brown, G. M.;N. Sutin
  19. J. Am. Chem. Soc. v.110 Dirrect electrochemistry of the undecapeptide from cytochrome c(microperoxidase) at a glassy carbon electrode Santucci, R.;H. Reinhard;M. Rrunori
  20. J. Inorg. Biochem. v.15 A study of the electron transfer properties of the heme undecapeptide from cytochrome c 1H nmr spectroscopy Kimura, K.;J. Peterson;M. Wilson;D. J. Cookson;R. J. P. Williams
  21. J. Phys. Chem. v.97 Protein electron transport: single versus multiple pathways Regan, J. J.;S. M. Risser;D. N. Beratan;J. N. Onuchic
  22. Annuc. Rev. Biophys. Biomol. Struct. v.21 Pathway analysis of protein electron-transfer reactions Onuchic, J. N.;D. N. Beratan;J. R. Winkler;H. B. Gray
  23. Science v.256 Electron-tunneling pathways in proteins Beratan, D. N.;J. N. Onuchic;J. R. Winkler;H. B. Gray
  24. Science v.252 Protein electron transfer rates set by the bridging secondary and tertiary structure Beratan, D. N.;J. Betts;J. N. Onuchic