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ABSTRACT

In many situations, the system failures depend on the operaling environmental conditions that vary
on time, usually with periodical manners. We use nonhomogeneous Poisson processes whose rate
funclions exhibit cyclic behavior as well as a long—term evolutionary trend to model the stochastic
process of the failures when the rate ol occurrence of the failures varies periodically, for example
from day to day or between seasons. In this study, we compare optimal policies under the nonho—
mogeneous process with/without a cyclic component in the failure rate function. The analytical re—
sulls for various situalions are presented along with numerical examples using simulated data.

1. INTRODUCTION

The replace problems under minimal repair have been studied to mimimize the
expected replacement and repair costs [1~4], since Barlow and Hunter [5] intro-
duced the idea of minimal repair. This paper investigates the problem of deter-
mining optimal replacement policies for equipment subject to failures with cyclic
rates.

The arrival pattern for system failures has been modeled as a point process.
In many cases, the observed failures of the system exhibit periodical variations
corresponding to the environmental characteristics at a site. When the rate of
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occurrence of system failures varies periodically, for example from day to day or
between seasons, successive system failure events are stochastically interdepend-
ent. It seems that a nonhomogeneous Poisson process (NHPP) with an appropri-
ate rate function is the most plausible, general type of time-varying process for
modeling system failure events, Cox and Lewis [6] pointed out that the continu-
ous rate functions for such a process can be approximated to arbitrary accuracy
with an exponential-polynomial function (EPF). For an NHPP whose behavior is
locally cyclic with a long term evolutionary trend, Lee et al. [7] suggested to use
an exponential-polynomial trigonometric function (EPTF) to model the instanta-
neous arrival rate. The EPTF is an exponential function whose exponent is the
sum of polynomial and trigonometric components. The cyclic variation of failure
rate can be represented with a trigonometric model identified by three compo-
nents: frequency, amplitude and phase. The parameterization of these compo-
nents provides physically interpretable values with which to characterize the cy-
clic behavior of system failures. Periodicity of failure rate is described by a value
of the frequency. The amplitude reflects the range of variation in the number of
failures, while the phase is associated with the increasing/decreasing period of
failure.

We use an NHPP with an exponential rate function for the system failure
model and frigonometric models to represent periodical characteristics in failure
processes. In this study, we compare optimal policies under the nonhomogehbous
process with/without a cyclic component in the failure rate function using Barlow
and Hunter policy IT [5] for periodic replacement with mimimal repair at failure.

2. NHPP WITH EPTF-TYPE RATE FUNCTION

An NHPP {N ) :t= O} is a generalization of a Poisson process in which the in-
stantaneous armval rate A(f)at time ¢ is a nonnegative integrated function of time.
The mean value function (or the integrated function) of the NHPP is defined by

u(t) = E[N@®)]= j; Me)dz for Vi>0.

In this study, An NHPP displaying cyclic behavior is assumed to have an EPTF-
type rate function. An EPTF of degree m has the form
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m

A(t) = exp {Z citi + A sin(cut + q.‘:)} €8]
i=0

where: {co,cl,--- ,Cp A ¢>} is the vector of unknown parameters; the first term

in the exponent of (1) is an ordinary function representing the general trend over

time; and the second term is a trigonometric function representing a cyclic effect

exhibited by the process.

3. BARLOW AND HUNTER POLICY Il FOR PERIODIC REPLACEMENT
WITH MINIMAL REPAIR AT FAILURE

The idea of minimal repair was introduced by Barlow and Hunter [3]. This idea 1s
that if the system fails, a repair can be made which does not materially change
the condition of the system from its condition immediately before failure. Under
the assumption of this idea, they suggested the replacement policy with the des-
ignation “Policy II”. If the replacement period is T, the Barlow and Hunter policy
II selects T so as to minimize the total cost per unit time

C(T) = anw{$fE[Nf(t)]+ $,E[N,.(t)]}/z

where 3, and $ are minimal repair cost and replacement cost respectively.
In [3] it was shown that E[N f (t)] w1 (T) which is the expected number of
system failures during 7 and

C(T) = [8;1) + 8,17 . @)
4. COST BEHAVIOR FOR FAILURE PROCESSES WITH CYCLIC EFFECT

The failure rate in a system generally increases, even though it may exhibit local
fluctuation, as time goes by. In this section, we investigated the cost behavior for
the system failure processes with cyclic effect using the EPTF-type rate function
of the first order polynomial degree:
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At) = exp{ a+ Bt + Asin(wt + qb)} (3)

where (a,f) are the coefficients associated with the initial level and increase rate
of the system failure process respectively, and (4,m,4) are the trigonometric
parameters corresponding to amplitude, frequency and phase of periodicity of the
process respectively. In (3), the phase parameter ¢ is set to 1.5z so as to have
the minimum rate at the initial point. Figure 1 shows changes in the failure rate
and expected failure number of system processes related to the EPTF-type rate
function when varying the trigonometric parameters of the rate function with
fixed imtial failure-level a= 0.0 and increase failure-rate fF= 0.5. The figure
containg in the left the graphs which illustrate variation of the values related to
the rate function with constant frequency o= 1.0 for different amplitudes 4=
0.1, 0.5, 1.0, and in the right, with constant amplitude A= 0.5 for different fre-
quencies @ = 0.5, 1.0, 2.0. For fixed trigonometric parameters (A= 0.5 and o=
1.0), Figure 2 displays the graphs for the rate functions with initial failure-level
a= 0.0 for different increase failure-rates A= 0.1, 0.5, 1.0 in the left, and with
increase failure-rates A= 0.5 for different initial failure-level &= -2..0, 0.0, 2.0
in the right. Figure 1 and 2 also show the total costs per unit time of (2) for the
system failure processes with cyclic behavior corresponding to the EPTF-type rate
functions considered in these figures when using §,=1.0 and §,=5.0.For §,=
1.0 and various §,’s, Table 1 and 2 contain the results which were numerically
estimated for the optimal replace-time and minimal cost per unit time for the rate
functions considered in Figure 1 and 2 respectively. It is clear that the optimal
time for the replacement becomes shorter and the minimal cost increases as the
initial failure-level and linear failure-rate are raised higher. As shown in Table 1,
variations in the trigonometric components result in changing the optimal time
and minimal cost. Especially, lager values of amplitude make the minimal cost
increase.

Next, we compared the total cost per unit time when using the EPTF-type
rate function of (3) for the failure processes with cyclic behavior to the one when
using the EPF-type rate function 4,(z):

Ao (t) = explag + Bot}- 4)

The coefficients (¢, 8,) of (4) were estimated with maximum likelihood for the
system failure processes associated with EPTF-type rate functions. Figure 3
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shows the estimated EPF-type rate and mean value functions, and corresponding
EPTF-type functions. Table 3 contains the results of maximum likelihood estimates
of (ay,f,) for the system processes related to the EPTF-type rate functions with
various parameters. For §,= 1.0 and various $,’s, the results of total costs per
unit time are shown in Table 4 when applying the optimal replacement-times which

Table 1. Optimal replacement time (in parenthesis) and minimal cost per unit time for various
replacement costs when using EPTF rate functions of
different cyclic parameters with a=0.0 and g=0.5.

w=1.0 A=05
& A=0.1 A=05 A=10 ©=05 ©=10 =20
| 24m 2518 2,686 2472 2518 2.507
b (2.009) (2.194) (1.303) (2.327) (2.194) (1.641)
3.992 4.062 4312 3.900 4.062 4.047
>0 (2.963) (2.329) (2.300) (2.554) (2.329) (2.638)
5.563 5618 5978 5.779 5618 5.697
100 (3.333) (3.278) (3.274) (2.766) (3.278) (3.614)
8.153 8.237 8.752 8.112 8.237 8311
20.0
(4.226) (4.246) (4.257) (4.424) (4.246) (4.133)

Table 2. Optimal replacement time (in parenthesis) and minimal cost per unit time for various
replacement costs when using EPTF rate functions of different failure
constant levels and increase ratios with 4=10.5 and w=1.0.

-
a=0.0 £=03
'5."
£=0.1 p£=05 £=10 a=-2.0 =00 a=2.0
1.649 2518 3.100 0.805 2,518 11.195
15
4.273) (2.194) (1.221) (3.294) (2.194) (1.191)
2.228 4.062 5.779 1.625 4.062 14.053
5.0 T
(7.274) (2.329) (1.383) (3.211) (2.329) (1.255)
2.808 5618 8112 2.560 5618 17.928
10.0
(9.283) (3.278) (2.212) (6.198) (3.278) (1.324)
3.697 8.237 12.520 4.148 8.237 22.616
20.0 T
(12.276) (4.246) (2.319) (7.193) (4.246) (2.248)




48

Rate

Cumulative Rate

CHOI AND LEE

50

L
[+
[~
2 3 4 3 6 0 1 2 3 4 5 6
Time
60 l
m40 ’\ o =0.5
& —_—
A
X
=
=
g ©=2.0
D20
0
2 3 4 5 6 0 1 2 3 4 5 6
Time
b7
=]
O

Time

Time

Figure 1. Failure rates, mean values and total costs corresponding to
EPTF-type rate functions with @ = 0.0 and g= 0.5.
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Figure 2. Failure rates, mean values and total costs coresponding to
EPTF—type rate functions with A= 0.5and o= 1.0.
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Figure 3. Estimated EPF rate functions for system faillure processes with cyclic behavior
corresponding to EPTF—type rate function of A = 0.5 and @ = 1.0.

Table 3. Estimated coefficient values of EPF rate functions for system failure processes with

cyclic behavior corresponding to EPTF rate function.

EPTF Parameters for Failure Process B Estimated EPF Coefficients
a B A ) &y Bo
-2.0 0.1 0.5 1.0 -2.200 0.112
-2.0 0.5 0.5 1.0 —2.208 0.534
=20 1.0 0.5 1.0 -1.814 0.978
0.0 0.1 0.5 1.0 0.000 0.107
Q.0 Q.3 0.1 . 1Q Q.000 Q0.500
0.0 0.5 " 05 1.0 0.000 0.506
0.0 0.5 0.5 05 0.000 0.502
0.0 0.5 0.5 2.0 0.000 0.512
0.0 0.5 1.0 1.0 0.000 0.543
0.0 1.0 05 . 1.0 -0.283 1.109
2.0 0.1 0.5 1.0 2.036 0.104
20 0.5 0.5 1.0 2.068 0.489
2.0 10 05 1.0 1.817 1167 |
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Table 4. Minimal cost per unit time for various replacement costs when using EPF rate
functions for system failure processes with cyclic behavior
corresponding to EPTF rate function.

=00 f=05 w=10 @=00 =05 A=05
§ A=0.1 A=05 A=10 w=05 @=10 =20 |
15 2480 2.665 3140 2,665 2.665 2.576
5.0 3.996 4224 4736 3.960 4224 4.075
100 5571 5672 5.983 6.015 5.672 5.805
200 8.153 8.256 9.088 8.200 8.256 8311
a=00 A=05 @=10 A=05 A=05w0=10
% | =01 B=05 B=10 a=-20 a=00 a=20
15 1.674 2665 3103 0.834 2.665 12.685
5.0 2231 4224 6.016 1.647 4224 14.086
10.0 2.837 5672 8.189 2.604 5.672 19.134
20.0 3.700 8.256 12.830 4214 8.256 22.644

Table 5. Percentages of cost reduction by using EPTF rate functions as compared with using
EPF—type rate functions for system failure processes with cyclic behavior.

a=0.0p4=050=10 a=00/5=05A=05
b A=01 A=05 A=10 ©=0.5 w=10 w=20
15 0.3% 5.5% 14.5% 7% 55% 27%
50 0.1% 3.8% 9.0% 1.5% 3.8% 0.7%
10.0 0.1% 1.0% 0.1% 3.9% 1.0% 1.9% |
200 | 00% 0.2% 37% 1.1% 0.2% 0.0%
@=00A=05w=10 f=05 A=05w=10
5 | =0l £=05 A=10 a==2.0 =00 =20
15 1.5% 5.5% 0.1% 3.5% 5.5% 11.7%
5.0 0.1% 3.8% 3.9% 1.3% 3.8% 0.2%
10.0 1.0% 1.0% 0.9% 1.7% 1.0% 6.3%
200 0.1% 02% 24% 1.6% 02% 0.1%
2=-20A=05w=10 @=20A4=050=10
> B=0.1 F=03 f=10 =01 £=05 F=10
15 0.1% 3.5% 15% 7.8% 11.7% 14.6%
5.0 0.1% 13% 3.1% 0.4% 0.2% 8.8%
10.0 0.8% 1.7% 0.1% 0.0% 6.3% 26%
Lzo.o 0.4% 1.6% 23% 24% 0.1% 0.7%
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were estimated using the EPF-type rate functions to the cyclic processes related
to the EPTF-type rate functions. Table 5 demonstrates the percentages of cost
reduction by using the EPTF-type rate functions as compared with using the
EPF-type rate functions for the cyclic processes. The results show that the mini-
mal cost is generally reduced when considering cyclic components in the failure
rate function. Especially the reduction amount is considerable if the replacement
cost is not much greater than the repair cost.

5. CONCLUSIONS

It seems in many cases that the failure rate in a system generally increases over
time and also exhibits local fluctuation. For the system failure processes with
cyclic effect, we investigated the cost behavior using the periodic rate function of
EPTF-type, and compared the total cost per unit time between using the periodic
rate function and using the non-periodjc rate function. The experimental results
indicate that we can reduce the minimal cost per unit time by selecting the re-
placement period using the periodic fajlure-rate function for the system failure

processes exhibited a cyclic effect.
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