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H " Control for Linear Systems with Time-Varying
Delayed States, Control Inputs, and Measurement
Outputs

Eun Tae Jeung, SunQ—Ha Kwon, Jong Hae Kim, and Hong Bae Park

Abstract

: This paper presents an H~ controller design method for linear systems with time-varying delayed

states, inputs, and measurement outputs, Using a Lyapunov functional, the stability for delay systems is discussed
independently of time delays. And a sufficient condition for the existence of H ™ controllers of n—th order is given
in terms of three matrix inequalities. Based on the positive-definite solutions of their matrix inequalities, we
briefly explain how to construct H” controller, which stabilizes time—delay systems independently of delays and

guarantees an H ~ norm hound.
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I. Introduction

Since 1980’s, the H~ control problem has been
extensively studied. It is well known that the state-
space result of Doyle et al. [6] is an efficient and
numerically good method for the standard H” control
problem. The existence conditions for an H° controller
were described by two Riccati equations and a spectral
radius condition. Gahinet and Apkarian [7] and Iwasaki
and Skelton [8] extended to the general H™ control
problem using the bounded real lemma (BRL) and linear
matrix  inequalities(LMIs). Necessary and sufficient
conditions for the existence of an H~ controller of any
order were given in terms of three LMls. On the other
hand, the study of time-delay systems has received
considerable attention over the last few decades because
time delay is frequently a source of instability and
encountered in various engineering systems such as
chemical process, hydraulic, and rolling mill systems,
ete. [16]. Recently, many researcher have proposed many
results for robust and/or H™ control of time-delay
systems, see, e. g., Cheres et al. [2], Choi and Chung
[31-15], Jeung et al. [91-[11], Kim et al. [12], Lee et dl.
[13], Li and de Souza [14], Mahmoud and Al-Muthairi
[15], 116], Niculescu [18], Shaked and Yaesh [21], and
the references therein,

The problem of robust control for linear time-delay
systems with parameter uncertainties is considered by
Choi and Chung [4] and Kim et al [12] (memoryless
state~feedback control via an algebraic Riccati inequality
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(ARD approach, and Jeung et al. [9] (dynamic output-
feedback control via an LMI approach proposed by
Gahinet and Apkarian [7] and Iwasaki and Skelton [8]).
Li and de Souza [14] tackled the problem of delay-
dependent robust stability analysis and control design
for a class of uncertain linear systems with delayed
state and parameter uncertainty. Also, Lee et al. [13]
and Chol and Chung [3] extended the memorvless H™
controller design method proposed by Petersen [20] to
state delay systems and both state and input delay
systems, respectively. Jeung et ¢l [10] and Choi and
Chung [5] presented the design method of H™ output
feedback controller for state delay systems via an LMI
approach. The problem of static H”™ output feedback
control of linear systems with measurement delay has
been considered by Shaked and Yaesh [21]. And the
design of memoryless H~ state feedback controllers
satisfying some « -stability constraints on the closed-
loop poles for linear systems with delayed state has
been proposed by Niculescu [18]. However, the problem
of H® control for time—delay systems has not been vet
fully investigated, although Jeung et al. [11] considered
linear systems with constant delayed states, control
inputs, and measurement outputs.

The objective of this paper is to present a design
method of strictly proper H™ output feedback cont-
rollers for linear systems with time-varying delayed
states, control inputs, and measurement outputs. After
developing a sufficient condition for asymptotic stability
independently of delays, we obtain a sufficient condition
which stabilizes the closed-loop time-delay system and
guarantees an H° norm bound. And we present a
sufficient condition for the existence of an H™ output
feedback controller using three matrix inequalities. Their
matrix inequalities are LMIs for some variables (X, Y,
7), but not some variables(B;, R; RKs. A simple
example to verify our results is illustrated.
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II. Problem formulation
Consider the delay system described by the state-
space equations of the form

(8 = Ax(D+ Ayx(t— di(D)
+ Byw() + Byu( ) + By ul t— do($)
z2(f) = Cix()+ Dy w(d)+ Dyyuld) (D
W = Cox(D) + Cax(t—dy(8))+ Dy u(D
() =0, <0

where x() e R" is the state, w(d e R' is the

square-integrable disturbance input vector, #(#) € R” is

the control, z(d = R’ is the controlled output, W9 e
q

R is the measurement output, (9, do(d, and ds(d
are time-varying delays with the following assumption:

0<d{t) <oo, df{d<m<1l, i=1,2,3 (2)

and A, Adl: Bh Bz, Bd2, Cly Cz, Cdg’ DII) Dlz,
and Dy are constant matrices with appropriate dimensions.

‘Also we assume that (A, By, C;) is stabilizable and

detectable. As an H” controller of the delay system (1), we
consider a strictly proper linear time-invariant dynamic
controller with same order of the given plant as. follows:

2D = Agx()+Bgy(d

Il

~ 3
u(d = Cgx(D

where x(d) € R” is the state of the controller and all
matrices are constant with proper dimensions. When we
apply the control (3) to the delay system (1), the
closed-loop system from w(#) to z(# is given by

&) = Aa&(D+An&t—d(D)
+ A p&(t— dy( D)

4
+ A&t dy(9) + Byw(d
Z(t) = Ccl (t)+Dclw(t)
where
x(2) A ByCk
EH= [ et - :
x(2) BxC, Ag
Ay 0 0, B4Cx
Acﬂ = { }: ACB = s
0 0, 0 0, ®)
0, O B,
ACB: » BCl: 4
BgCy, 0, BgDy;
Cy=1C DypCgl, D =Dy,

Here, we introduce the shorthands as follows:

0 mxq CK

K= , (6)

By Ag

107
A0 A,
Ay = . Ap= )
0 0, "
BZ 0 Bl
By = ) Byy= >
0 I, 0 uxr
de Cz 0
By = Cp= ,
O nxm 0 In
Cloz[c1 0p><n], Ce.o:[caf3 qun],
Dy,
Dy=1IDy 0 x4l Dy = ,
0 .x
: @
E].U:[-Iﬂ On], EZOZ[Im Omxn]’
E30: [[q 0 an] T,
then
Ay=Ay+ ByKCy, Ag = ApEy,
Ap= ByEpKCy, A= BpKEyCy,
B,= Byy+ ByKDy, Ca= Cy+ DyKCy,
()

Dy=Dy,

Note that (7) involves only plant data and that all
matrices of (8) are affine form of the controller data K.
We consider the design of a stabilizing controller data
K which yields the closed-loop system with H” norm
bounded above by a specified number. To help our
results, we need to review well-known results.

lemma 1 : ([1], [17]) : For any symmetric matrix

L= [ L u L 12], the following are equivalent.

12 Loz
) L<O
i) L;;<0, Lp—LHLi'Lyp<0
iif) Lyy<0, Ly—LpLp'lh<0

Lemma 2 : ([11, [7], [8]) : Consider the problem of
finding some matrix K such that

I+ KO+ 0K I < 0. ©

Then (9) is solvable for some K if and only if
orsm, <o, (10)
6738, <0, (1)

where II, and @, are orthogonal complements of IT
and O, respectively.

II. Sufficient conditions of stability and 4 norm
bound for time—varying delay systems

In this section, we discuss the stability condition of
the system (4) and present a sufficient condition which
stabilizes the closed-loop system (4) and guarantees the
H® norm bound.

Lemma 3 : Consider the time-delay system (4) with
w($)=0. The time-delay system 4) is asymptotically



108 ICASE : The Institute of Control, Autormation and Systems Engineering, KOREA Vol. 1, No. 2, December 1999

stable for all d{H=0, i=1,2,3 with the assumption
(2), if there exist positive-definite matrices P, Ri, R,
and Rj; such that

@n PAy PBy PBypKEjy,

AgP  —-F, 0 0
o= <0 (12

ByiP 0 -7 0

EZK'BEP 0 0 R
where
Qu = ALP+PA,+ELRE, 13
13
+ CLKTERR,EyKCoy+ CER:Cap,

R = (1-m)R, i=12.3. (14

Proof @ Let’s define a Lyapunov functional V(&5 as
follows:

t -
W) = P+ [, €D ERREe(Ddr
A
[ 4§D CRRTERR B KCrp&(Ddr (1)
t
+ fzgda(,)sT( 7) Cg,](;R3C30$( 0 dr,

then the corresponding Lyapunov derivative is given by

AVEED _ 7 gt a6)
where
&P
Ewé(t—~di(®)
W= , (a7
EZOKCUOE( t_ dg( t))
Cyé&(t—ds (D)
Qll PAIO PBZO PBOOKESO
Afp —-R, 0 0
Q= o , 18
BLP 0 ~-R, 0
EIK'BEP 0 0 ~Rs
Ri=(1—d{)R;, i=1,2,3. (19)

From the assumption (2)

%ﬂ =27 (D QU D<77(D) Yp(p).  (20)

Therefore the time-delay system (4) is asymptotically
stable under the condition (12). ||

Note that there exist many sufficient conditions of
the stability for the time-delay system (4), because we
can obtain another sufficient condition according to the
selection of Lyapunov functional. The sufficient condition
in lemma 3 is necessary for lemma 4.

Lemma 4 : Consider the time-delay system (4) and
suppose that opax (Do) < 7. The time-delay system (4) is

asymptotically stable and lz(Dll; < #llw(Dll;, if there exist
positive-definite matrices P, R;, Ry, and R; such that

S PB, CL PA, PBy PByKEy]
BIP  —yI DL 0 0 0
Ch Dy —vI 0 0 0
_ <0 (@D
ALP 0 0 —-R 0 0
BEP 00 0 - 0
\EXK™BGP 0 0 0 0 @ — T
where
S = ALP+ PA, + ELREy
(22)

+ CHKTEfRyEnKChy+ ChRyCy.

Proof @ The positive-definite matrices P, R,, R, and
Ry which satisfy (21) also satisfy (12). In order to establish
the upper bound 7ilw(dlly for [1z(Hll5, we introduce

J= [ 702D — 7 (Dulh + V(ED, DId. (23)
From the initial condition of the state in (4)
J= fow{r_]zT(f)Z(f)—VWT(t)w(z‘) Jdt+ V(& o0),00) (24)

because V(&(0),0) =0. Therefore the proof is completed
if J<0. From lemma 1, the inequality (21) is equivalerit to

[ @y PAy PBy PByKEy, O ]
AGP —R 0 0 0
®:=, BLP 0 —-R 0 0 [€0. (25)
ExK'BpP 0 0 —-R; 0
oL 0 0 0 — O]

where
Oy =S+y'CiCa,
@s=PBu+ 7 'CiDa,
O55=7I—7 'DiDq.

The performance measure (23) can be rewritten as follows:

7= [ 3o ar 26)
where
[ &
Ep&(t—di (D)
W)= | ExKC&(t—dy(D) |, 20
Cy(t—ds ()
| w(?)
@y  PAy PBy PByKEy Oy
ARP  —R 0 0 0
®:=| BP0 —~R, 0 0 [ (29
EZK™BY 0 0 ~ R 0
| ok 00 0 -0y
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We can easily obtain the relation @sa, so /0. A

The matrix inequality (21) in lemma 4 is similar to the
matrix inequality of BRL for non—delay systems except terms
related time delays. That is, lemma 4 presents a sufficient
condition that the time-delay system (4) is asymptotically
stable independently of time delays and the H” norm of the
time-delay system is less than given 7> 0.

IV. Sufficient condition for the existence
of H” controllers
By applying the result of lemma 4 developed in the
previous section, we present a sufficient condition for the
existence of H® controllers of the linear time-delay
system (1) and explain how to construct H~ controllers.
Using lemma 1, the condition (21) can be changed to

ALP+PA, PB, CL PAy, PBy PByKEy Ef CiK'Ex Ci
BIP  —yI DL 0 0 0 0 0 0
Cu Dy —yI 0 0 0 0 0 0
ALp 0 0 - 0 0 0 0 0
BIP 0 0 0 -R 0 0 0 0 |<0.
EIK'BGP 0 0 0 0 -7 0 0 0
Ey 0 0 0 0 0 -R{" 0 0
ExKCpyp 0 0 0 0 0 0 —Ry! 0
Cxy 0 0 0 0 0 0 0 - R;!
(29

equivalently, this matrix inequality (29) with the
notation (8) can be represented as

G+ UKV™+ VK'U'<0 (30)
where
U=[BLP 0 DH 0 0 0 0 Ex 017, (3D
V= [ Cog Dzo 000 E30 00 0] T, (32>
and
AZP+PAy PBy Ch PAy PBy 0  Ef 0 ch
BEP -7 Di 0 0 0 0 0 0
Cy Dy —»1 0 0 0 0 0 0
A{OP 0 0 —-R’ 0 0 0 0 0
G= ByP 0 0 0 —-& 0 0 0 0
0 0 0 0 0 & o0 0 0
Ey 0 0 0 0 0 —-R1' 0 0
0 0 0 0 0 0 0 —Ry' 0
Cy 0 0 0 0o 0 0 0 —Ri
(33)

The lemma 2 cannot be directly applied to (30) because
K is a special matrix as (6). Through some matrix
manipulations, the inequality (30) will be ‘changed to a
useful form. We partition U and V as

1,17

=[U Ul (34)

S

I
oc~mococooYo
coocoococoo

|

=)

DD O OO OO ND

<3
il
coomoooFTod

Substituting (3), (34), and (35) into (30), then
G+ UBy ALV T+ VIBx Ag1TUF<0  (30)
where
G = G+ UCVI+ V,CEUT. (37

From lemma 2, the inequality (36) is solvable for some

(U)T&() . <0, (38)
VTGV, <0 (39)
where (Uy). and V', are orthogonal complements of U

and V, respectively. To simplify the conditions (38) and
(39), we partition P and P! as

Y N X M
P= , Pl= (40)
NT 2 MT 2
where X,¥Ye R”", M,Ne R™" and ? means

irrelevant. And we can choose orthogonal complements
of Uy and V as follows:

-1
P[(ﬂoooooooo
0 10000000
0 0000000
0 00100000
(U, = 0 00010000 (41)
0 00007000
0 00000700
0 00000070
| 0 0000000 1
I 0 000000
0 0 000000
0 I 000000
0 0 I00000
1o o0 0rzo0000
V. 0 0 007000 (42)
—C, =Dy 000000
0 0 000700
0 0 0000 0],
0 0 000001

Substituting (41) and (42) into the inequalities (38) and
(39) gives

XAT+AX+ CiBI+B,Cx B, XCT+CEDE A4 Bs 0 x CF xci,
Bl -y Dh 00 0 0 0 0
X+ Dy Cx Dy —7I 0o 0 0 0 0 0
A7, 0 0 -® 0 0 0 0 0
BY, 0 0 0 -® 0 0 0 0 <0,
0 0 0 0 0 -® 0 0 0
X 0 0 ‘0 0 0 —-R' 0 0
Cx 0 0 0 0 0 0 -R' 0
CaX 0 0 0 0 0 0 -R7
(43)
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ATY+YA-CiRC, YB—CiRDy C] YA, YB, I 0 c%
BIY-DIR,C, —7I-DiR:Dy DI 0 0 0 0 0
G Dn -yl 0 0 0 0 0
ALY 0 0 -®R 0 0 0 0 ¢
BLY 0 0 0 -B 0 0 0
I 0 00 0 -R' 0 0
0 0 6 0 0 0 -R'0
Ca, 0 0 0 o0 9 0 —RyY
(44)
where
Cx=CxM". (45)

Using lemma 2, the above inequalities are simplified to

Xy B, xcT+CiphL, x Ck XC%
Bf -7l D 0 0 0
Cix+DyCx D — o 0 0 0
X 12%“K 11 <0y (46)
X 0 0 —R7Y 0 0
Cx 0 0 S
CaX 0 0 0 -R'
Yu VB~ CiRyDy Cf YA, YB,
BYY—DIFR.C, —y[-DiR:D, DI 0 0
¢ Dy —7I 0 0 {0 “4n
ALy 0 0 —-RF 0
BLY 0 0 0 —-R
where
Xy = XAT+AX+ Cr"Bf
+ByCx+ AR, AL + B, R, BT,
Yy = ATY+ YA— CJR,Cy+ R+ CLR:Cy,.
Theorem 1 : If there exist positive-definite matrices
Rlv Rz, Rg, X, and Y SatiSinng (46), (47), and
X I
>0, (48)
1Y

then there exist y-suboptimal H” controllers of order n
for the time-delay system (1).

Proof : There exists a positive-definite matrix P
satisfying (40) if and only if the inequality X— Y 1>0
holds. This inequality is equivalent to (47). The rest of
the proof is mentioned before. [ ]

Note that theorem 1 does not present the computation

of the controller itself, but existence conditions of H"

controllers. The inequality (45) is an LMI for X, Cg,
Ry, R;Y, RyY and 7 and (46) is an LMI for Y,
R, R,;, R3, and y. However (46) and (47) are not
LMIs in terms of R;, Ry and R; simultaneously.

Unfortunately, it is not yet known an algorithm solving
them at the same time. Here we introduce a procedure
for designing H” controllers as follows:

[Procedure]
(P1)  Let y= 7.

(P2) Tind the regions
R = (R, Ry, Ry | X>0, (46)),

R = (R, Ry, Ry | Y0, R>0, (4D)).
(P3)  Obtain the intersection of R and R,
R =RNER
If B is empty, increase y and return (P2). If not, go
to next step.
(P4 Compute X>0, V¥»0, and Cx such that

Min G, p pyep ¥ Subject to (46) —(48).

If X>0, Y20, and Cx exist, go to next step. If not,

increase y and return (P2).
(P5) Compute two nonsingular matrices M,Ne

nxn

R such that
MNT=I-XY (49)
and P from
i I X
=P [ . (50)
NT D 0 M~

(P6) Find Cg from (45) and [Bx Axl satisfying (36).

Remark 1 : In the procedure (P1), (P2), and (P3), the
set of solution existence K widen as y is increased,
and the existence of the set R does not imply that the
matrix inequalities, (46)-(48), are solvable, but a
necessary condition for the solvability of (46)-(4R).

Remark 2 : The minimization of the procedure 4 is not
convex problem in terms of R;, Ry, and Rsbecause the
mequalities (46) and (47) are not LMIs in terms of them
However, it is not difficult to find the minimum 7 because
the computation can be executed within the searching
regions of R, R, and Ry obtained in the procedure (P3).

V. An example
Consider the time-delay system (1) with

R 1

mell] e[l mel%)
10 0 0

CIZ[O 1], D11=|0], D12=[ 0 },
00 0 0.5

sz[l 3], Cd3=[05 02], D21:0.5,
di(HD=0.7sint+3, dy(H=0.8cost+3,
ds(=0.6sin¢+2.

Let y=1 and let R,=al, for simplicity. From the
procedure (P2) and (P3), we can obtain the set

R = {R,Ry, Ry | Ri=al, 0.2112<a<6.2233,
0.0425¢ Ro<4.0144, 0.2749< R;<41.9436}.

The minimization of the procedure (P4) is attained at
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Ry=1.7142L,, R;=0.2907, R3=38.1016,

then the minimum value of y is 08182 and X, Y,

and Cx are

X

Il

[ 1.0036 ~0.4816}
—0.4816 0.4686 |
4.0858 1.4602
Y= [ jl’
1.4602 4.3634
Cr=10.0016 —1.67981].
One pair of solutions satisfying (49) is 7
—0.8816 0.4720 2.7192 0
—0.7219 —0.0011

0.4720 0.8816)

and the positive-definite solution of (50) is
4.0858 1.4602 2.7192 0

1.4602 4.3634 —0.7219 —0.0011
p= .

2.7192 —0.7219 3.4901  0.0007

0 —0.0011 0.0007 0.0002

From (45)
Cx=[—0.7942 —1.4802],

and [Bgx Ag] satisfying (36) is

—2.0940 ‘ —1.4380 0.8061

[BKAK]Z[

7174.7176 | — 2085.4735 —6440.0746]

V1. Conclusions

In this paper, we have developed an H~ output
feedback controller design method for. linear systems
with delayed states, inputs, and measurement outputs.
We have proposed a sufficient condition for the
existence of H~ output feedback controllers of n-th
order in terms of three LMIs for some variables. Based
on the positive-definite solutions of three LMIs, the
proposed H” controller guarantees not only asymptotic
stability but also the H” norm bound for linear time-
delay systems independently of the delays. An illustra-
tive example has been given to demonstrate our results.
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