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Control Design for Flexible Joint Manipulators with
Mismatched Uncertainty: Adaptive Robust Scheme

Dong Hwan Kim

Abstract : Adaptive robust control scheme is introduced for [lexible joint manipulator with nonlinearities and
uncertainties. The system does not satisfy the matching condition due to insufficient actuators for each node. The
control only relics on the assumption that the bound of uncertainty exists. Thus, the bounded value does not need
to be known a prior. The control utilizes the update law by eslimating the bound of the uncertainties. The control
scheme uges the backstepping method and constructs a stale transformation. Also, stability analysis is done for

both transformed system and original system.
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I. Introduction

A control problem for flexible joint manipulators
which are nonlinear uncertain systems is considered.
The experimental work regarding to the cffect of joint
flexibility [1] shows a significant influence on system
performance compared with rigid manipulators. So far
there have been a lot of works related to the study of
the control for flexible joint manipulators. Spong [2]
cited references of thcse works. These are exact model
based approach, which includes singular perturbation
[3], [eedback lincarizaiion scheme [4], and Invariant
manifold scheme [5][6], robust control [7], and adaptive
control [BW9]. Feedback linearization requires cxact
knowledge of the robot parameters. Flowever, from
practical aspects we need to consider the issuc in the
presence of uncertainty. As for robust control based on
Lyapunov approach we need the bound of uncertainty
a priori. This may occur practical concern whether we
can appropriately estimate the bound of the uncertainty.
Insufficient knowledge of the uncertainty may arise
umnecessary control cost or saturation in controller.
Consequently, an adaptive control scheme is developed.
Earlier works on adaptive control schemes for [lexible
joint manipulators have been conducted by several
authors [8]-[11]. These reports introduced control
schemes which require feedback of acceleration or
“jerk”. Measurement noise in the system however pro-
hibits the implementation of these schemes. Basically,
the idea of the adaptive control is to reduce the level
of uncertainty by estimating unknown parameters. On
the other hand, robust control is to design a controller
that can tolerate some level of uncertainty and provide
satisfactory performance. In many cases, with only
adaptive control there may be excessive transie-
niresponses cven if parameter adaptation converges.
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Therefore, it is worth while {o investigate a controller
which combines adaptive and robust scheme to enha-
nce system performance. To utilize robust control
scheme we have to overcome mismatched uncertainty
issue which includes the current system. Since flexible
joint manipulator system does nol have control inpul
in each mode the system is not matched uncertain
system any longer. This paper use the state trans-
formation via implanted control to overcome this issue,
which is also shown in [12][16]. The control using the
state transformation via implanted contral [12] relies
on the possible bound of uncertainty. Sometimes, the
control can be conservative with using a high upper-
bound of uncertainty. The control scheme in [16] can
be applied to general type of manipulators but the
constraint imposed on the boundedness of inertia ma-
trix is a drawback in control. Also the control has the
conservativeness issue. In this paper the issues on the
conscrvativeness and uniform bound ball adjustment are
addressed by introducing a adaptive version for
fexible joint manipulator system.

The major development of the proposed adaptive
robust control in this paper is divided into two parts.
A state transformation via implanted control is used
for the development. First, by proposing adaptive ve-
rsion we overcome a practical concemn that the
possible bound of uncertainty is to be given a priori.
By using an adaptive robust scheme we fry to
estimate the bound of the uncertainty. The proposed
adaptive approach satisfies some properties that inclu-
de uniform stability and uniforrn boundedness. It also
satisfies a property that transformed states approach
zero. Furthermore, by this schemc the original states
approach zero in case the gravitational force is absent
or the system is coordinated such that gravitational
force approaches zero as link position converges to
zero. We demonstrate the procedure to design control
schemes and apply those controls to a 2-link flexible
joinl manipulator.
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II. Flexible joint manipulators

Consider an » serial link mechanical manipulator.
The links are assumed rigid. The joints are however
{lexible. All joints are revolute or prismatic and arc
directly actuated by DC-electric motors. The dynaric
equation of motion of the flexible joint manipulator can
be expressed in terms of the partition of the genera-
lized coordinates [7]:

Dlg) 0 [ l]/] C(Q/, 611)[1/ Glg
NG

S I T

where D(g,) is the link inertia matrix and J is a
constant diagonal matrix representing the inertia of
actuator. C(q,, q;)q, represents the Coriolis and centri-
fugal [orce, G(q,) represents the gravitational force,
and #u denotes the input force from the actuators. Also,
joint stiffness by K(hence K ~' exists) is presented.
2:=0a2 84 Qon-2d2] T a,=[a1 01 Grima@au-1] ",
gs. g4 are link angles and ¢, g3 -+ are joint
angles.

IOI. Adaptive robust control

We consider an adaplive versionn of robust control
for a flexible joint manipulator system. This approach
is hascd on the state transformation via implanted
control and on combining state vectors and parameters
of bounds. This control does not need the bound of the
uncertainty a priori. In this approach we have properties
on system performance, which are uniformn stability
and uniform boundedness for the states and para-
meters to be estimated. Furthermore, by this approach
we see that both transformed states and original
states approach zero.

Let X,=gq, Xy,=d, X3=q; and X ;= q; also let
x1=[XT X707, x,=[X% XO7 and x=[x7 «717

We construct the following two subsystems for the
flexible joint mamnipulator systern by using the statc
variables x;, xg:

Nl: x-l(t) =f1(x1(t), 01(t))

+B(x1 (D, 01(H)x2 (D,

Ny x(8) =Fo(x(d), 05(D)
+By(oy (D)D),

(3)

where the functions and matrices of (2) and (3) are
same with those of [16].

Here, 0,=R° and ¢,=R" are uncertainty parameter
vectors in N; and N, Suppose we do not need to
know the possible bound of uncertainty but the bound

should be “compact”. Thus, we propose the following
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Assumption.

Assumption 1 : For each subsystem, the mappings
01(* 2R—=Z,CR®, o4+ )R-Z,CR™, op:R>3.C
R’ are Lebesgue measurable with X,,%,, %, un-
known but compact.

From now on, if no confusion arises we omit
argument for the uncertainty in (o, q), Cl(a1,qy,
7)), etc. Now, we premultiply £ ~' on both sides of
the first part of (1) and construct two subsysterns as
follows:

Ni Dg)g+ Canapdi+Gla)ta=a;, @
Ng Ja;+Klgi—a)=u. 5)
where

Dg)=K 'Diq),
C(Qz, q'1)=K_lC(c11, fI.l), (6)
Gla)=K 'Gla).

The problem is to design control u which renders
the systems N, N, to have good performance. Notice
that the uncertainty does not meet the matching
condition [15] of the total system. Thus, we divide the
total system into two subsystems as shown in (4)-(3)
and introduce an implanted control for the subsystem
N|. Therefore both subsystems have “inputs”. Let us

rewrite (4)-(5) as

v Dag)a+Uanada+Glapta, -

=u+q;—uy,

Ny Jg;+Klg—q)=u, )

where the “control” w«, is implanted. This does not
affect the dynamics in N,

We now transform the system (N, N») to a system
(ﬁ , N3) by using a state transformation. First, let

=[2T 207, 2,=12%F 2717 and 2=[272%1", where

Zyi=a, Zy=gqu
9)

-

Zyi=g;—uy, Z43=Q.;—Z;1-

This implies that z,=x, and z,=x,—[u;2,]"
The dvnamics of the manipulator can be expressed in
terms of z:

ﬁl D(Zl)Zl
== UZ,, 202~ Z)—Z1+Z3¢ u,, (10)

Ny iJZs=—Ju\—KZs+KZ,—Ku,+u. (1)
Let
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b1(gr, a0, 00

2=—% Xapdnor. 6(d+51a)
(12)

-8gndn,00)d,—Gla,o0)

—qrtDg,00)84,

for given S,=diagl S 1] sxs S1:20. Then, we see that
there exists an uncertain functon ppR"XR™R.
such that for all ¢, €R” ¢, €R” 0131, 61X,

Né1(aranor, oo (ar, 0. (13)
Let
polzy,2,,01,04,0;)
i=—FKopu(z,,25,01,09) —K(a,)Z; (14
-I-K(az)Zl—K(ag)_u1+](62)SzZa,

for given S,=diagl So] 4xn, S2>0. Here, the implan-
ted control «; is described later. Then, we see that
there exists an uncertain funclion pxR¥xR™—R,,
such that for all z,=R¥™, z,=RY, 0,3, 0.5,

5152”,
||¢2(21,22,01,02,6}1)I|5P2(Z1,22)- (15)

Assumption 2 [14] : 1) There exist an unknown cons-
tant vector Ble(O,OO)k and a known function 7
R"XR"x(0,)* >R, such that for all ¢,=R", q,
e R

eana)=Ha; anBy). (16)

2) The function (g, ds * ):(0,) >R, is C?
(i.e., 2-times continuously differentiable) and concave
(e, —Hg; q5, +) is convex), and nondecreasing
with respect to each coordinate of argument, 5,.

3) The functions I7,(+) and ggll (+) are both
CONtinuous.

4) There exist an unknown constant B.=(0,c0)’
and a known function HzR¥xR*x (0, ©)—R ., such
that for all z,=R™, z,=R™,

pz1,22)=MAz,,22,82). (17)
5) The function Hs(z,.z2, - ):(0,%0)—=R,is C!,

concave and nondecreasing with respect to each
coordinate of argument, 4.

6) The functions I[I,(:) and —%g—zz (-) are both
continuous.
Let
w1=(Z2,+8,Z)\(2,, B, (18)

pri=lun .. 21" (19)

pr1=[py 13- P17 (20)
We construct controller for the subsystem N3:

()= _Kplzl(t)_Kul-Z-l(t)

(21)
‘*’f)l(zl(l), %l(t),el),
where
oy
%1(l‘)= T W(Zl(l‘), B9
o5 (22)
* 1Z,()-+S5,Z,(All,
Kpl: = didg[km,] nE Ry kﬂli>0;
(23)
KU]: =dz'ag[/em] n¥ny kv]z'>0y
él(t)=—~4—71£1(t), (24)

B1(t)e(0, )", &)(t)e(0, ), 1;>0.

Here T, is a nonsingular diagonal matrix with positive
elements and n corresponds to the number of links.
For given e:>0, py; is chosen to be

M1

-z, B, i ey, D ey
[l 15 Ml
1= u (25)
— sin( 25“ Mz, By, if lley ll<e,
1
i=1,2,...,n Nole that
s_ﬂnl(zl, By, if 0=py<e,
P #1‘ (26)
=— (2, BY), if —e;=u0,

&1
-

and llpy 1=I(v1, B1).

Next, for given &3>0 we design control for the
subsystem N3 as follows:

= —KpZo)—KpZy(d on
+03(z1(D,22(D, Bo(D, e2(8),

where

2221 22, Ba.E2) (28)

oz, 23, By)

- 7
[ lleeo(2y, 22, B) | 2212, B2,
if |lpoz;, 25, ’Bz) 1>,
#2(21;:?2’ %) oz,,2,, /Bz),
iflle a2y, 22, Ba) lI<e,

and K, and K, are positive diagonal matrices. Here
Bo (D and e5(d) are determined by
oIy

Bo(i)=T: 125+ 8224l 555 (21,20, B, (29)
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£y =— 4%2520), (30)

Z’z(to)e(o, o)’ e4(tg)e(0,00), 1550,

where T, is a positive diagonal matrix. In this
section, we construct e, and &5 dynamics instead of
selecting them as constants. These will be shown in
proof to help to cancel the remaining terms of the
derivative of Lyapunov [unctions.

The selection of K,,K,, K, and K, can be
conducted as follows.

1) After choosing $,, select 4 such that for w;>0,

21— F w1 A S0, (31)
where
Al "-=m1n[/1 mm(Kvl), ’{mm(SIKp])], (32)
< =[S% S
Sy S I]' (33)

ii) Based on A, we select values for K,, K.
The selection of is shown as the following sub-
sequent steps.
iii) Let
A2=miﬂ[/1 mm (KUZ)7 Amm(S2Kﬁ2)]- (34)

iv) After choosing S select 4, such that for w;>0,

Ag—%wflﬂ). (35)

v) Based on 4, we select K, and K.
Assumption 3 : There exist unknown positive co-
nstants o,, o, such that

0 J=D(oy,q4)< 04, Vg eR", Yo, €2,  (36)
Define the parameter estimate vectors
200 =[Bu(d Bu(D... Bua(®d El(f)]T
E(O, OO) k1 __ . gp-l,

P3() =[ Br(d) Bu(d... Bp(d ex(DI”
E(O,OO)JH=3§V2,

(37)
=0 9,7 2,717,
r=y \uw,,
and the parameter vectors
¢1 =By Bau-..Bu 0170,
¢y =181 Bn...Bp 0110, (38)

The controlled system can be described by

D(z)Z, =—UZ,,2)Z2,- G(Z))
(39)
'_Zl+23‘|‘u1,
JZs=—Ju,—KZ;+ KZ|— Ku,+ u, (40)
Tl_ll|gl(t)+517—'1(t)||
3
xS (2100, Ba ()
_4_7;151(1‘)
o= TNZ(D+S:Z5ll | (41)
UL (D, 2(D, Ba ()
EER Z1 ] , 2
*%Izaz(f)

Here, arguments on the uncertainty in D, €, G. and
J are omitted for simplicity.

Theorem 1 @ Suppose Assumptions 1-3 are met, then
the system (39)-(41) under the control (27) has the
following properties.

Property 1 @ Existence of Solutions: For each (zy,
dy, t)ER*" X Wx R there exists a solution (z, 9):[#,,
)—RYT T of (39)-(41) with (2(z4), 9(2p))= (20, o).

Property 2 @ Uniform Stability: For each #>0 there
exists &>0 such that if (z(-),¢(-)) is any solution
of (39)-(41) with [lzC¢l, 119(¢¢) — AI<S then [lz(II,
19— dll<p for all telt,, ;).

Property 3 : Uniform Boundedness of Solutions: For
cach »,, »y>0 there exisl d,(»i,72), dory, r2)=0
such that if (z(-),%(-)) is any solution of (39)-(41)
with [lz(¢g)ll<7), and [9(¢o) —dl<r; then lz()l=<d,
(ry,72) and 9D —dl<dy(r),7p) for all t=tg, ).

Property 4 : Extension of Solutions: Every solution
of (39)-(41) can be extended into a solution defined on
[#g,00).

Property 5 : Convergence of z(-) to 00 If (=, ¢k
[£g,0)—R*"x ¥ is a solution of (39)-(41) then

1li_13319z(t)=0.

Proof : Choose functions Vir(z:, ¢,) and Vg

(25, ¢2) as follows:
Vidzy, $1.e0) =VizD)+ Ve B+, 42
Var(za, §5,62) =Valz)+ Vi Bo)+ ey, (43)

Where

Vl(zl)z %(Zg+5121) Tb\(Zg‘i‘SIZI) m

+%ZJT(KM + S\ K7,

V,Ql( //\31):%( %’1_51)2-'1( 21“&1), (45)
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Vilz2) =3 (Zat $iZ) DN Z, + S:2) o

+ 3 Z{ (Kt S, K07,

Vil By} = %( Bo— B T5( B B2, (47)

To show that V,r and Vi are legitimate Lya-
punov function candidates, we prove that hoth Vs
and V,; are positive definite and decrescent. Based
on Assumption 3,

Vi(z) =% aillZo+$ .24l
+ 120K, +5.K 02,

=3 0s 2(23+281:2,2,+ SEZ)  (4B)
% 21 kﬁ11+slzkulz)zll

=3 212u Zil 2 51,

Vol Br= 80>+ 0.(T) | Bi— 1> (49)

where

_Q-ks%i+ kuit Siika: 0451

L2 1 = (50)

g5y, Oy

Here, Z,, and Z, are the i-th components of Z,
and Z,, respectively. Since 2.0, Vi and T30, V,
and V, are positive definite. Therefore, by combining
(53) and (54), we have

Vi 2t 2w ( Q)2+ 2

1)
2y Ml ?,
Ve 253 aa(TOI B ul?
(52)
=70 B =B
where
=g MR (20, =12, (8

r® = A (T, (54)

and ¥} is an unknown constant. Let 7= B —
Next, in conjunction with Assumption 3 it can be seen
that

Vilz) <3 GullZo+ 8.2

2
+ 5 ZIE S K W2
15 B (Zh+2802.2,+ SEZA)

% Z(kmi—f—slzkvh)zi

(55)
_. 1 )
-} B 22 2]
Vﬂl( ’Bl) é’{ max(Tl)” 781”2, (56)
where
E'l‘n'S%z'_*_kph"f"Slz"leulz lezsli
1= _ . (57)
o'}fslz o3
Furthermore, we have
é% lei min (2 (2%, + 22)
‘ 58)
<y§Vllz |l %,
Ve £ 1A TOIB =8l
(59)

_7'81)” %1 :31”

where

pO =Ll mEx [ max oy i=1,2,, 2] (60)
2 H 25}

78 1= G A (T, 61)

and 7V, 7§P are unknown constants.

Similar to V, and Vg, V; and Vj, is also positive
and decrescent. This follows since

1L 5
9 Amm( 2 ,)(Zi-I-ZZ)é.V(z)
2 ﬁ’ 2 3 FASY (62)
< L S Ao DBt 2,
%Amm( TZ)“ EZ“Z£ Vﬁ_,( Eg)
(63)
< L hm (T BIP.
where
QQ ﬁSZz+kﬁ22+S2kuZz —6521
== 8BS 8
Qg = 6S 5+ kit Saik i _‘9§2i
’ 6S 5 6 |
0= A (D,
(64)
8 :=2m(D.
Thus,
2)”2 NP Vy(z)<ys R 2l % z (65)
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7’;2)” Bo—BallP=< V4 ( Bo<rPl By— Bl (66)

Wwhere
1 min [ min P
2 Z [ 02 Amm( in)’ 1_1;2: ;n]:
1 max | max 7 =

7=y [ P Ame( 229, i=1,2, ,n], -
La(T,
1

(2)
2

and, »{®,7$? are unknown constants.

The derivative of V,p is given hy
Vie=Vi+ Vg +1le1. (68)
Concerning ¥V, it can be seen that
Vi =(Z,+$,Z)TXZ,+S,Z)7
+ (2145207 HZ,+5:2) (69)
+ZU(K g+ S1KDZ).
From (14), we obtain

Vl =(Z-1+5121)T(_@Z'1_@_21+Z3

+ 2y DS Z,+ Dz + DS.1z)
““Z{(Kpl‘i‘Sle)Jl
—(2,+8,2)7% N(2,+5,2) (70)

- (’jZ-l— G—Zﬁ— BS[Z-x)
+(Z\+$12) u+(Z,1+5:2)7Z;,
+ZUKa+ 81 K20,

By the “control” z, in (20), (16), and (31) it can be
shown that

<(Z\+$1Z) (—KuZ —KuZ1+p)
+1Z1+ 81 Z (21, 81)

(2 4+ S22+ ZN K+ S\ K DZ, (T
<= Llla |2+ 20+ 8,2, (21, 81)
F(Z,1+8.:2) 00+ 21+ S ZNIZ .

For |lz./i>e,, the second and third term in (71)
becomes

121+ 12,21, 8)+(Z1+81Z) 7,
< R NZy+ $1 2T (21, 8Y)
= @)

NEWAY
Mﬂl(zl 51))

12+ S LZ
= Z‘HZ'],--I- SuZul(H (=, B — M (z1, BY).

-+ g( Z+ SuZ )~

When ||z,Jl<e,, then
”21"|'5121”H1(21,ﬂ1)+(21+5121)Tp1
< B2y §u 20T\ (21, ) (73)

+ ZI(Z-M*'SlzZli)Q(—Hzl(Zh 31)2%).
Concerning Vg, it follows

Vg, =( ?1_31)TT1
(74)

* (T7WZ,+8.Z 2 (21, B0

1155

Simce —II(&,, -) is convex for all z,€RY the

first and third term in (79) becomes

Ml (21, BO(B1— B

<M\(z,, B)—1(z,,8)
Therelore, it becomes
Ve s (2, BO—Hi(z1, 80 12+ 8,2\l (76)
I ll#4dl>eq, by using (71)-(72) and (76) we obtain
Vi+ Vg
< — Alzill?

= B2t SuZdl Gy, B0 = Mo, B
7

+ R Z0+ SuZoIUT (21, B~ 121, 82)
HI 2+ 8,240 14

=— Allzd®+11 21+ 8,24l 1Z4l.

I lle)l<e,, then by using (71), (73), and (76) we

obtain
Vi+ Vs
<= Az lPP+ DNZo+ S 02Tz, B
=t (78)
- ZI(Z'IJ+SltZII)2H21(ZI’ /Bl)—el;'
+1 248,21 1z
Therefore, V,+ V; is upper bounded by:
V1+ Vﬁl
<= dilla P+ RN 20+ SuZilll (=1, B .

- z:L(Z.Iz"!'Slile (21 2? )’_
N Zi+ S 2yl 1Z4l
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Based on the inequalities abéé (’+ B9, a, beR,

IZ%<llz 1%, we have the inequality condition for

1Z,+S:1Zyll IZ4)l with any constant w,>0.
NZy+8,Zil 1Z4l

1

< w12+ 5,21+ 5wz

< wllZi+8,12,P+ L wilizl?

=

paf— D= Do

0 an( S22+ + w7z 1
From (84), and inequality (83), we get

Vie <— 44llz4?

+ ZIHZ-U—" SuZ (=2, By

- zil( Zlf—i—Slile)ZHzl(zl, %’1)%1
e HI 2+ 5,23 123

ne ne
= — AIHZIHZ_I_TI *Tl

+1Z1+ 8, Z3l 11Z3.

<= illedlP+ & 0, Sl

+ 1wzl

2
Next, the derivative of Vyr is given by
Vo= Vot Vg, +1ze,.
Concerring Vg, it follows from (11) and (14)
Vo =(Z3+8:2) N Z3+ 5,23
+ZUK p+SsK ) Z 3
=(Z3+8:Z)(—Ju,—KZ,
+KZ\— Ku+JS3Z3+w)
+ZUK 5+ S.K p) Z
=(Z3+S:Z)(¢3+u)
+ZUK g+ S K )25
It follows [rom «150.(17),(27) and (34)
Ve <lZ 5 Z I ol +(Z3+S229) Tu
+Zy(K n+ S2K p) 725
<N Z5+ 82 Z4ll o2y, 23, 87)
F(Z23+ S, Z) (—KpnZ3s—KaZ3+0)
+ZNK g+ S:K )2,y

<= Aol + 11 Z5+ 822352y, 22, 82)

+(Z3+ S22,

(80)

(8D

(82)

(83)

(84)

Concerning V,, it follows from (29)

Vﬁ_) =( %2"' .Bz) TTI( 792_ Bz)
(85)

ary
=(By= 87Ty (T7 75> (21,23, Ba).

Since —H,(z,,z5, -) is convex for all (z,,z,)=R®

KR we get

7
(Bo= )™ S0E (21,20, B)

<ITyz1,25, B)—HAz1,24,8).

(86)

Therefore, it becomes
I'/'Bzﬁ(ﬂg(zl,z%m)*ﬂ(21,22,32)) 123+ S,Z4ll. (87)
By adding (84) and (87), we obtain
V2T = Vg+ Vﬁl‘\‘lgég
=(Z3+85:Z) (21,22, Ba)
] R . (88)
(244 82Z) Tut+ Z5(K p+ S K p) 2

+1 2 E 9.
From the control u in (27) and (34) it can be seen that

Var =(Z3+S:Z) (2,25, By)

F( 234820 (—KpZy—K 3 Z5+13)

+ZU K y+ S K )23+ 128,
== ﬁz’lzzuz‘f‘l,23+522.5,,H2(Z1,Zz, Ez) (89)
H(Z3+S2Z3) pot 1z,
For |Juq(zy, 29, Boll> e, the second and third term in
(89) gives
N Z3+S2Z:lllT (2,22, B2)+(Z3+5,Z9) 7,
=1 Z3+S:ZlllT (2,25, B2)
. (90)
—1 23+ 8,24l x(21,22, B2)
=0.

Wheﬂ ”,Ug(zl,?.'z, /Bzuﬁé‘g, then

NZ3+ S,Z4lT (21,25, B)+(Z3+S5223) 7D,

=1 Z3+8:Z3llTo(z,, 25, B3)
(91)

—||23+Szzu|lznzz(21,22, %2)%2

£2
S4.

Therefore, we have

N & -
Vor <— _2||Zz||2+Tz-|-lzsz
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== dolledl®+ P+ 1o~ )

(92)

=~ Agllz4ll*.

This shows that V,, is bounded from above. By
above results (81) and (92), we get
T'/'T = Vl:/‘"" VZT
s—ul—%wmm( SOl (©3)

(42— W11)|]22||2
If we choose 4, and A, such that

2= % 0w S0,

(94)
A= wil0,
then we have
VT =< — min[ ./.11_”%'7'01/1 —_— _31),
A= Fwl il (96)
=:—yy(ld]) a.e. on [ty,t,),
where
7aQlal) = min{ 2, =% w1t a5,
(96)

Az—“wl RN

With the arguments given above, Properties 2-4 follow
directly as we apply the results in [14]. For the
Property 5, we consider from (71), and (84)

Vi+ vV,
2|2+ 812 (2, B)+H(Z1+5:Z) T,

- A]HZ 1”2

+ 3 Al S w1

+ 3wzl = 2allzdl?

FN1 Z5+85Z3lllT5(2 1, 22, B2) +(Z5+S22) by )
2121+ 81 Z Ml (21, 8D HZ1+5:21) b,

TNZs+8:Z)lI (71,22, 82)+(Z3+ S22 b,

For the first and second term of (97) it can be seen
that

1Z1+S1Z (=1, 80 +( 21+ 85,2 Dy
=1Z,+S,Z|UI(z,,8) T (21, B1) (98)
’|'||Z-1+SIZI||H1(31, %1)+(Z-1+3121)T151.
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For the first two terms in (98) we get

“21‘|‘5121”(171(21,51)"171(21, 271))

<l|Z;+8 Zln (z1 BB~ B1)
= ‘ﬁ‘uz +81Z:lx(Bv— Bi) g ‘ml (21, B))
=:21(p, (99)
where 7 :R—R_ is given by
ra={% ol (100)

We see that a(=0 for all te[t,, ). Also, utilizing
(22) and (99), we obtain for each f=[¢,, o)

f;:a%(z’)dr zfliglﬁ(ﬂli_ %1{)'1"1 z’l,(z’)dz

(101)
<y(te) —9(d),
where
Wir= 3% T8 Bu0), 102
Since 7(H=0, we see that
[lalarsntey), Vielty, o), (103)

Hernce, f; ma{(r)a’r is finite. For the last two terms of
(98) it can be shown
”Z-Il'i'SIZl”IIl(ZI, Bl)+(21+5121)TD1

ne (8
4

< 21t .

(104)

Therefore, by (99) and (104) the first term in (97) is
given by
1Z+ 81 Z )T (z21, B)+(Z1+ S:2)7p,
(105)

nEl(to)

=ai(H+ 4

Simmilar to (105), the last two terms in (97) can be
seen to satisfy

(108)
<D+ ——Ezflt“) i
where
. ; oIl .
allh) 1= RlBa— Ba) g5t (21,22, Bo) o

X1 Z3+ S 2,
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Also, we see that 2¥(H=0 and ft a¥(ndr is finite.

Therefore, we get

Vi+ V, <al(d+ ————”EZ(“) +al(h+ —Ezy")
(108)
=:[Z1([‘)+612,
where
a(H=aj(D+ai(,
(109)
_onea(te) | ety
2= 4 + 4 .
From (55), (58) and (62), we obtain
Tl Vi(z) + Vilzo)= Fallall?, (110

where %= min(z{?, 7, ¥,=max[r{", r{1

In view of (95), we have the following result

[ aars V ot = VDS Vi) Q1D

t
for all t=[ty,%). Hence, ft’)’g(HZ(T)H)dT is finite.

Here, we see that ft a(dr is finite, and «,(H =0,

Vie[ty,e0). The result of (108), (110), and finiteness
of f:m(llz(r)ll)dz-, and f:al(r)dr satisfy Lemma 3
in [14]. Hence ltglgllz(t)ll=0. Thus, l;g&z(t)=0, and
we see that this fact satisfies Property 5. Q.E.D.

IV. Performance of system (Ni, N2)

We now investigate the corresponding performance
of the original system based on the performance of the
transformed system. The analysis for the performance
of the orginal system follows the similar approach
(161,

Finally, we obtain

1
lladl = (Ul 12+ Tl

1
<(d+(cpd+ey(d+ep)?? (112
=: w(d){oo,

This enables us to investigate the uniform bounded-
ness of x based on the performance of the trans-
formed systerm.

Theorem 2. Suppose that Assumptions 1-3 are met,
then the system (8)-(9), (26), (28), and (34)-(35) under
the control (32) satisfies Properties 1-4.

Proof. The system performance has been shown as
above. Q.E.D.

V. lllustrative example
Consider a 2-link flexible joint manipulator (Figure
1). Let link angle vectors g¢,=[g, g4 7 and joint

Fig. 1. 2-link flexible joint manipulator.

angle vectors ¢,=[q, ¢;]17. Then we have D(q),
Clg, qp, Glgp, I, K as follows and all parameters
are unknown in [16].

Select each value as follows:

10
§1=8,= , 0:=1, T1=Ty=1y.,
[o1] (113)
T3= T4=14x4, w1=0.

We choose &,=¢e,=10 for the case 1. Based on the
ahove values we can choose A;=1, and 4,=2, to
satisfy (31) and (35). So we select Ky=1, K, =2,
K,=2 and K,=3. Next, set

My(zy, B) = Bu g+ )

PR (114)
+ By @'+ a’),

IXz1,22, B2)

= Bu( @i+ ¢+ Bu( o+ &) (115)

+ Bal i-Izz‘*‘ t.14z)+ Bl 6'1124‘ 2132)-
Now we have following controllers:
ur=—Kna,~Kua,t21, (116)
j)1=[p11p12] T, (117)

_ﬁﬂ1(l]1, /ﬁ]), if ||/-£11||>-‘51
pu= e (118)
—sin(5 (e s, BY, i leli<en,

— L7, BY, if e wlld ey
122 yoll

b= - (119)
— sin( 25112 MI(a, By, if llzpl<e,

lpg #pl T=C(a,+S1a0'T(q:, B, (120)
u=—K p(g,—u))—Kylad,—u)+ps, (121)
where

llzz(fl.j'“ 221+Sg(q,~—u1))172(21,22, %2) (122)
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J .
— ey Tz i llad>e
{_ﬂ
€2

by= (123

oy if (leqli<es,,
The update laws of parameters is shown:

’Bl =] jén :B-ZL]T

||Z-1‘|‘5121”( 6122‘|‘ 6142)

(124)

121+ S1Z4IC a2+ a4

Be =[ By Bn By Bul”

||Z:3+Szz3||(1122+ 2|
_ | NZ3+S2Z4lICa*+ as?)
5 -2 ol
NZ3+S2Z4llC a2"+ a4°)
, -Ta -9
NZ3+ S, Z4l( ¢+ 03)

(125)

e1(+), e9(+) are chosen as:

Si== e, &=—Tren (126)

For simulations, we choose m,=1, m,=05+03
sin(028), L,=1, L,=05 K,=K;=1+05sin(02s),
J1=7,=015, I,=1,=1, These parameters are ur-—
known but the upper bounds exist without necessarily
knowing those values. Simulation results are shown in
Fig. 2-8. We decide to apply a nonlinear control which
is designed via feedback linearization of the nominal
system. Here, we adopt the input-output feedback

2.0

[rad, rad/sec]

time[sec]

Fig. 2. History of link angles and angular velo-
cities with feedback linearization control

O FI S T as).

60.0
40.0
20.0
—20.0
-40.0
-60.0

[rad, rad/sec]

time[sec]

Fig. 3. History of joint angles and angular velo-
cities with feedback linearization control
(— (75 P / & Y—— - Q‘], ........ (13).

linearization where the input is the joint torque u and
output is the link angle ¢,;. Fig. 2-4 show the
response of the system (151) with the nominal system
based input-output feedback linearization control for
the time-varying case. We choose nominal values as
m,=03, K,=K;=05, and J;=7,=01. The others
are identical to those as chosen above. Therefore, the
control performance is not satisfactory as expected
viewing the simulation results Fig. 2-4. This is since
the design for the feedback linearization only utilizes
the “nominal” part of parameters. Therefore, the further
the true uncertain parameter is from the nominal one,
the less likely the system performs close to when it 18
with the nominal parameter. Fig. 5-8 show the
performance improvement by using the adaptive robust
control. We see that both link and joint angles and
angular velocities approach zero and have a satis-

100.0
50.0

Nm

—50.0

—-100.0
timelsec]

Fig. 4. Input torques at actuators with feedback

linearization control ( Uy, oo 13).
1.5
g 1.0
20
g 05
-
E —
- 9 12 15 19
-0.5

time[sec]

Fig. 5. History of lnk angles and angular
velocities with adaptive robust control

( gey, TTTT gy ——— — G2y e 44),
6.0
— 4.0
©
& 20
o
& _
& =2.0 12 15 19
©
— —4.0
—6.0
time[sec]

Fig. 6. History of joint angles and angular
velocities with adaptive robust control
( Y7 P -3, T lil, ........ qs).
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2.5
2.0
1.5
1.0
0.5
0 3 <] 2] 12 15 19
time[sec]
Fig. 7. History of parameters ( B, -—--o- Ba1,
Bz, B, By, = — Br).
30.0
20.0
10.0
c _
< —10.0 11 15 19
—20.0
~-30.0
—40.0

time[sec]

Fig. 8 Input torques at actuators with adaptive
robust control ( UL, oo uy).

factory ftransient performance. Fig. 7 shows the
parameter histories and we see that all parameters
remain bounded. All parameters converge to certain
values, which are true ones or nol, as time elapses.
Nevertheless, by the Properties 1 through 5 we see
that the parameter errors are uniformly bounded and
stable. Fig. 8 shows the input torque histories. With
the use of the adaptive robust controls, an improved
system performance in terms of smaller settling time
and steady state error is achieved when comparing to
the nominal system based feedback linearization control.

VI. Conclusion

An adaptive robust control has been constructed for
flexible joint manipulators which are nonlinear, time-
varying and mismatched. State transformation via
implanted control is introduced. No statistical property
of the uncertainty is assumed and utilized. Only the
existence of the hbound of uncertainty is assumed,
although the bound 18 not given a priori. The control
has been utilized by combining states and parameters
to be estimated, and guarantees 5 properties mentioned
in section Il regarding to uniform boundedness and
uniform stability etc. Since &; and &, will decay, a
careful selection of /; and /; to overcome chattering
in practical implementations is recommended.
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