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2. FLUX ESTIMATION WITH FILTER CONCEPT

Induction motor rotor fluxes are selected to
represent the desired and estimated state variable.
The following two independent estimators, in the
stationary frame, are generally used to derive these
rotor fluxes.

2.1 Current Model of Rotor Circuit

The rotor flux estimator can be formed if the stator
current and the rotor speed are measured in real time.
It can be represented as follows.

A¥ 1 AF Lm o5
ldqrf(-m - (— T_ 1 + wr‘]] Azlqr,um + —‘[.:‘ Ls (1)

r

1 0 0 -1
where, 7.=L /R, I , J = ,
r [ r O 1 1 0

. . . T
l.\' = [lzl.\' qu] ’

T
)udqr_,cm = [ldr,('m Arql;('m:l

2.2 Voltage Model of Stator Circuit

The voltage model utilizes the stator voltages and
currents, but not the rotor velocity. It is commonly
used to implement direct field orientation without
speed sensors for low cost drive applications. The rotor
fluxes in the stationary d-q reference frame can be
‘obtained.

.8
A

;qum = _l% {(V: - R, l'::) - O'L\,i.x} 2)

where, o=]---

T
Azlqr;vm = [Ar(lr,vm lqr \'m]

2.3 Rotor Flux Estimation Using Filter Concept

It is well known that the current model is heavily
dependent on the parameter accuracy. Similarly,
though the voltage model has less sensitivity on the
parameter accuracy, the low speed sensitivity is a
well acknowledged limitation of this observer due to
the stator resistance and the offset problem. Thus,
by utilizing the current model in the low speed range

and voltage model in the high speed range, more
accurate rotor flux can be obtained in wide speed
range. In this paper, the filter concept is used to
utilize the current model in low frequency region and
the voltage model in high frequency region. The
resultant rotor flux is obtained from the low pass
filtered current model rotor flux and the high pass
filtered voltage model rotor flux. The resultant rotor
flux observer is written as:
Aaar = [HPF )X g om + [ LPF )2 dgr o 3)

where, i‘u,,,,m, denotes the voltage model rotor
fluxes. A'u.. denotes the current model rotor
fluxes and [HPF]' [LPF] denote the high pass
filtering operation and the low pass filtering
operation respectively. From (3). a flux angle can
be detected, which enables direct field oriented
control.

The filter can be designed in arbitrary order. For
example, second-order filter is used, then

5

A

HPF | ———— 4
[ ]s“+Kps+K,. @
K s+K,
[LPF)= — 2 —1 5)
ST+ K, s+K,

The coefficients in (4) and (5) can also be determined
by the filter concept. In case of Butterworth filter, the
coefficients are related as

K, =20, K,=0, (6)

where denotes the cut-off frequency of the
filter. Note that this cut-off frequency is the
transition point from current model to voltage
model. This flux observer has less parameter
dependency in high speed region and has higher
immunity to noise and measurement error in low

XNigr vm l
+ YT,

K, 1
[ K+ 3 —>

speed region.

x’dqr_au +
2% 1 YR BELYE B RS K 5]

Fig. 1 Flux estimator with both voltage model and current
model
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2.4 Estimator eigen value selection

First of all, to select the eigen values of the estimator,
that of the controlled system should be predetermined
from (1).

s+— o, |
det(sI — A) = det L :[s+—] +w’ (7

8)

=5, S, Lo
Tr
If high eigen values are selected for the estimator,
the convergence rate increases but the estimator
stability will be diminished. To estimate stable flux
quantities, the value of the estimator should be
selected according to that of the system. In this
paper. variable estimator eigen value is used in
designing the filter to satisfy the system
requirements: i.e. rapid response and stable
estimation. Thus, in this paper, the characteristic
root presented by @, is determined as a function of the
machine speed.

o, =f(o,)

:iL 20 (I>,4+5] (9)
T.\o

- max

Eq. (9) shows that the estimated speed is used in
calculating the cut-off frequency of the filter. In fig. 2,
the eigen value determination algorithm is illustrated.

4

0 © mex ) stem_pole 1 wagi
l ——d,| Observer pole \ m,l "
5% \
— Rea
+

©e +
a3 2 R& FHU|9 DA MY

Fig. 2 Eigen value selection of the Flux Estimator

3. The Newly Proposed Speed Sensorless
Control Algorithm using Neural Network
Based on Extended Kalman Filter

The back-propagation algorithm can be summarized
as follows.*

w, @D = w O+ Aw T (D) (10)
where,  Aw, (1) =18 0" +adw T (=1

6, = (tj -0, )f'(ijk) for the output layer

J

6, = f'(i/k)%&,w“ for the hidden layer

The Back-propagation training algorithm is an
iterative gradient algorithm designed to minimize the
mean square error between the actual output of a feed-
forward net and the desired output. The algorithm
proceeds as follows™:

(1) Initialize the weight vectors w ;" (¢) randomly.

(2) Run a training pattern through the network.

(3) Evaluate the error signals using step 1 and step 2.

(4) Update the new weight vectors w A (tusing step 3.

(5) Qo to step 2 if the network has not converged.

Fig. 3 illustrates a feedforward net with only forward
connections.

Error back-propagation{learning algorithm)
2 I 7
J /

input layer Qutput layer
Hidden iayer

J8 3 oE AEERY
Fig. 3 Multi-layer Neural Network

3.1 Learning algorithm via the extended Kalman
filter

We have reviewed how the back-propagation
algorithm essentially implements gradient descent in
sum-squared error. It should be noted, however, that
the learning rate is constant, so we may have to
consume more time to obtain a sufficiently convergent
results, even though we can take into account a
momentum term. Our main theoretical contribution
here is to show that there is an efficient way of
computing a time-varying learning rate.

Our learning strategy is based on regarding the
learning of a network as an estimation (or identification)
problem of constant parameters.
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The multi-layered neural network is expressed by the
following models with non-linear observation equations:

Wt + 1) =w, )+ (1) (1)

y+D= ( t+1)+vt+1) 12)

M+ +v(r+1)

where {(1). v(t)}are mutually independent, zero-
mean noise with covariance matrix Q and R regarded
as a modeling error. Note that they can be considered
pseudo-noises for tuning the gain of the extended Kalman
filter. The application of the EKF to (11) and (12) gives
the following real-time learning algorithms:

w(t+1)=w, (1) + K/.,.(t)[yj(t) - ojM(t)] (13)
1 H
K (1) = P(z+l ) (t) (14)
/ H, ()P, +110H, (" +R
P(t+1ln=P(ln+Q (15)

Pt+11+D)=[1=K,(H, (O |P(t+111) (16)

The filtered estimates of w,“ " *, k=M-1,.2 at #+1 are
obtained by the following extended Kalman filter:

A

W ) =0 O+ s et )

where,

ik P +111)
Ny ()= T p kLK
H,(t) P/ (t+1/DH () + R
H,(0" = £'(j o
k+1
5jk =f,(ijk )N EI Wﬂk‘kﬂ&AH f()r k — M—l,~~-,2
8! =11 )(-"/ _O/k)

s - A k=lk — k-lk
with initial conditions w/.,,A 0y = w/.fA : and

for k=M

Pj’vkil'/\ (0 I 0) —_ F}ik~l.k(0)

3.2 Speed sensorless control strategy

Two independent observers are used to estimate the
rotor flux vectors: one based on eq. (1) and the other
based on eq. (2). Since eq. (1) does not involve the
speed @, this observer generates the desired value of
rotor flux, and eq. (2) which does involve @ may be
regarded as a neural model with adjustable weights.
The error between the desired rotor flux A dgrom E1VED
by eq. (1) and the rotor flux A'wom

provided by the neural model eq. (2) is used to adjust
the weights, in other words the rotor speed .

The rotor speed can be derived using the Kalman
based on NN. The overall blockdiagram of speed
sensorless control is shown in fig. 4.

AN

Neural Network Emulator

e O N
. L e

Xk - O 210 )

il ‘
XK _| G

k) | -
&, EKF based ) + Aigr v
NN Ailgorithm

J 4 o, FHS s A0 Ads|zae| Tx
Fig. 4 Structure of Kalman based of NN for ¢ _estimation

The weights between neurons are tuned so as to
minimize the energy function

1 5, 142 . R
E= 5 £ = 5 (l(/q,gwn (k) - ldqu,m (k)) (1 8)
The current model can be represented as a neural

model.

(k)= x(ow' (k) (19)

:Iqr cm

where,

x(k) = [i\q:,(wz(k) ixd/;un(k) l\q\(k)]

$

w(k) = [1 Ay o,T, Ly KJ
T T

The weight variation is given by
BE 8E az‘(Iq: cm

AW (K)o — = —/— 20
@, (k) Jo, 9L, o (20)

dgr_cm r

The estimated rotor speed ®,(#)applied by Kalman
based on NN is computed as follows

o, M+ =0 0)+n 08 0} (21

4. SIMULATION RESULTS

A 22kW 4-pole induction motor is used for the
simulation and experiment simultaneously. The
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B R=ES7IQ ¥
Table 1 Induction Motor Parameters

Rated Power 22kW L, 43.75mH
Rated Speed 2000rpm | L, 44,09mH
Rated Torque | 120Nm L, 42.1mH
R, 0.115Q T 0.1618kgm?
R, 0.0821Q P 4
Speed ControlletT s
- )
; l
L rwEE e
Drive E Iy 1—7‘( =
Aot | & n ma ‘
| e =
ifewont N
P PR i
; Ly Ui ) e Vactor
o e R ]

8 5 M Hof du2|Fe S5
Fig. 5 The block diagram of the overall control algorithm

nominal parameters used for the simulations are given
table I .

The proposed sensorless control of induction motor is
shown in fig. 5.

Fig. 6 shows the step response of the conventional BP
algorithm. The step response of the proposed sensorless
algorithm is shown in fig. 7 when the speed reference is
changed from O(rpm) to +10(rpm]. As shown in fig. 7,
we can know that the speed error is limited by 1.0% of
the rating speed. Also. the proposed learning algorithm
usually converges in a few iterations and the error is
comparable to that of the well-known back-propagation
algorithm.

Both algorithms were started from exactly the same
initial weights with values ranging from O through 1
and the traing patterns were selected in exactly the
same order. The learning rate, covariance, and
momentum terms were selected to try and maximize
the performance of each algorithm. For the back-
propagation algorithm, the learning rate and
momenterm term was 0.7 and 0.1, respectively. The
proposed algorithm used R=1.0, Q=0.005 and
P(0)=10.5.

+20

-
[rpm] ,m’ a"),—/
30 .
rpmil “V . - A,
», — @,
—5 - -
+10- T
b F ¢
P
2] DT
—to- 400[ms])/div
(a)
+20 — T
&,y
treml I P=a,
:
—20
3 7
M. M
rpm) - -
- @, — D,
—s 4
+10W
7.
1l
] A
—10- 400[ms}/div
(b)

13 6 MEdAolM £ T Ed vl
Fig. 6 The characteristics comparison of speed estimation in the

low speed region. (0 — +10(rpm), 20,000 iterations)
{a) (Method-1) BP-based NN algorithm
(b) (Method-2) EKF-based NN algorithm

Back Propagations Algorithm
E 2.56-01
20E01 —&
E 1.5E-01 AN
'§- 1.0E-01
2 50502 Net————8
2 0.0E+00
0 0.1 0.3 0.5 07 09
Initial Weights
—&— 24,000 iterations —8— 40,000 Iterations
(a) )
NN based on EKF Algorithm
£ 2se.01
w
2.0E-01 —V
E 1.5E-01 AN
;’., 1.0E-01
g 5.0E02 Xi,_?!s—..q
i 0.0E+00
[ 0.1 0.3 05 07 09
Initial Weights
{~#—24,000 iterations —8—40,000 iterations
(b)

a8 7 ISR o 2] AMZre] HEe] At

Fig. 7 Results of mean squared error vs. the deviation of
the initial weights.
(a) (Method-1) BP-based NN algorithm
(b) (Method-2) EKF-based NN algorithm



AT AR LY o] &8 FENEYY S5 243} Ao} 189

Comparison of the MSE vs. the lteration Number

8.E-02

Mean Squared Error
N Ao
Ly Iy
S g N

3 5 7 9
Number of iterations (x8,000)

—¢—Bp S -EKF.NN

18 8 HoMgRA of whEs|ol Hin
Fig. 8 Comparison of mean-squared error vs. the number
of iterations

System Sensitivity to Parameter Variation

§ 7.0E-02 N
§ 6.0E-02 —
5 s0e02 —
3 4.0E-02

3.0E-02
i 2,0E-02
& 1.0E-02

0.0E+00 — * —

09 1 11 12 13 14 15
Rotor Resistance Variation
~4-gp ~BEKF-NN

T2 9 nEto|e| giEo) cht A|AE piZtE
D ST ) SIWA AE HE
Fig. 9 System sensitivity to parameters variation
- speed variation vs. rotor resistance variation

Fig. 8 shows the mean-squared error versus the
iteration number for both algorithms during training.
The proposed algorithm remains below a mean-squared
error of 0.07 after 5 iterations as opposed to the back-
propagation algorithm at 10 iterations.

5. EXPERIMENTAL RESULTS

For the high performance IM drives, the overall IM
drive system in fig. 10 is implemented with a
TMS320C31 DSP control board and a PWM IGBT
inverter.

For actual load emulation, the DC generator is
coupled to the IM. Actual rotor speed is measured from
an incremental encoder with 4096(ppr]) resolution for
monitoring. The sampling time of current controller loop
is 250(#8) and that of the outer voltage regulating loop
and speed loop is 2.5(ms]). The control algorithm

CPU : THS320C31 DSP
SRAM : 256k X 328it
ROM ; 32k X 378U

J% 10 HA REHET| 75 AlAH
Fig. 10 The overall IM drive system

i = o,
3
3
~ ]
£ | [— s
E —
kg
% - t o~
¥
3
= B .
(a) 0.5[sydiv
== ¥
5
]
8
: 1
5
e[ T
$
g 1 ] Iz
() 0.5sydiv

I3 11 MEEHolM £EFY EM H|m

Fig. 11 The experimental waveforms of characteristics
comparison of speed estimation in the low speed
region (0 — +10(rpm), 20,000 iterations).
(a) (Method-1} BP-based NN algorithm
(b) (Method-2) EKF-based NN algorithm
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1.2x R, b
500 g ~
= R, -
% A 0.8x R,
£ MOT o Em" @
[
0.5[s]/div
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ix
500 L r i ‘o
\OSXR_
s (=
1= " n
5 O et @
0.5{s)/div
(b}

O3 12 AR Mg Kol e £E3Y S

Fig. 12 The experimental waveforms of speed response
characteristics according to the rotor resistance
variation (0 — +500{rpm), TL=0).
(a) (Method-1) BP-based NN algorithm
{b) (Method-2) EKF-based NN algorithm

125mpdv 7 SAYdY  250fmmidv 250fmmdv
lj il
: &

(= ppr—
§ P ~— } -
£ c .
2 I . jr .
i () O-Stayety

JE 13 FSiET QUM £E8E S4 v

Fig. 13 The experimental waveforms of characteristics
comparison of speed response when applied to the
joad torque(0 — +500(rpm), TL=1(p.u.}).
(a) (Method-1) BP-based NN algorithm
(b) (Method-2) EKF-based NN algorithm

including the proposed scheme was fully implemented
with the software.

Experiments are conducted to evaluate the
performance of the new speed sensor elimination
algorithm based on the NN. The speed step response of
the proposed sensorless algorithm is shown in fig. 10
and 11 when the speed reference is changed with no
load torque. As shown in the figure, the proposed
algorithm works well in spite of the variation of the
machine speed. It shows that the estimated speed is
tracking the real one with good accuracy. Fig. 12 shows
the characteristics of load torque response. As shown in
those figure, the proposed algorithm works well in spite
of the load torque variation.

6. CONCLUSION

We have studied learning algorithm for multi-layered
feedforward type neural networks and proposed a new
back-propagation algorithm that uses extended Kalman
filters to identify the connection weights of the network.
The simulation and experimental results can be
summarized as following two points.

(a) The proposed method assures faster learning than
the BP algorithm

{b) Unlike the conventional method, it doesn't require
a large number of learning step.
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