베트남 짜봉(Trabong) 지역의 열수 금 광화작용 : 광물 및 지화학적 연구

Hydrothermal Gold mineralization of the trabong district, vietnam : Mineralogical and geochemical study

  • 발행 : 1999.04.01

초록

베트남 짜봉 지역의 열수 금광상은 단일 광화 시기의 석영$\pm$방해석 맥으로 산출되며, 원생대의 Chulai Complex와 Kham Duc Formation을 이루는 ga 흑연 편마암 및 편암 내의 단층 열극을 충진하고 있다. 광석의 금 품위는 1.3~92.4g/ton 이다. 광석 광물은 매우 단순하여 주로 황철석 및 미량의 base-metal 황화물과 에렉트럼으로 구성된다. 금은 다음과 같은 두 유형의 공생군에서 산출된다. :1) 함철량이 풍부함 섬아연석+엘렉트럼 공생군으로서 황철석 내의 내포물로 산출되며 초기에 해당;2) 함철량이 낮은 섬아연석+방연석+엘렉트럼 공생군으로서 황철석의 단열을 따라 산출되며 후기에 해당. 유체포유물자료 및 공생광물군에 대한 열역학적 고찰에 의하면, 광화작용은 H\sub 2\O-CO\sub2\(-CH\sub 4\)-NaCl 계 유체로부터 230~42$0^{\circ}C$의 고온에서 진행되었으며 광화 유체의 황 분압은 10\sup -6\-10\sup -10\atm 이었다. 광석 광물의 침전은 주로 CO\sub 2\ 개스의 일탈을 수반한 유체 불혼화에 의해 진행되었다. 광화 유체 중 물의 산소 및 수소 동위원소 조성과 황화광물의 황 도위 원소 조성 및 유체포유물 CO\sub 2\ 의 탄소 동위원소 조성은 본 연구 지역의 중-고온형 금 광화작용이 마그마성 유체로부터 진행되었음을 지시한다.

Hydrothermal gold deposits of the Trabong district in Vietnam occur as single-stage quartz $\pm$ calcite veins (0.3-1.2 m thick) which fill fault fractures in graphite-bearing gneiss and schist of the Chulai Complex and Kham Duc Formation of the Proterozoic age. Ore grades are 1.3 to 92.4 g/ton Au. Ore mineralogy is very simple, consisting mainly of pyrite with minor amounts of base-metal sulfides and electrum. Gold grains occur in two assemblages as follows: (1) early, Fe-rich (7.2-10.4 mole % FeS) sphalerite + electrum (50.4-64.3 atom % Au) assemblage occurring as inclusions in pyrite; (2) late, Fe-poor «4.7 mole % FeS) sphalerite + galena + electrum (47.6-81.7 atom % Au) assemblage occurring along fractures of pyrites. Based on fluid inclusion data and thermochemical considerations of ore mineral assemblages, ore minerals were formed at high temperatures (about $230^{\circ}C$ to $420^{\circ}C$) from $H_{2}O-CO_{2}(-CH_{4})$-NaCI fluids with the sulfur fugacity of about $10^{-6}$ to $10^{-10}$ atm. Fluid inclusion data also indicate that ore mineralization occurred mainly as a result of fluid unmixing accompanying $CO_2$ effervescence. Calculated oxygen and measured hydrogen isotope compositions of mineralizing waters (${\delta}^{18}O_{V-SMOW}$ values = 5.3 to 8.6$\textperthousand$, ${\delta}D_{V-SMOW}$ values = - 60 to - 52$\textperthousand$), along with the sulfur isotope compositions of vein sulfides (${\delta}^{34}S_{CDR}$ values = - 1.2 to 2.8$\textperthousand$) and carbon isotope compositions of inclusion $CO_2$ (${\delta}^{13}C_{PDB}$ values = - 4.7 to - 2.0$\textperthousand$) indicate that the high temperature (mesohypothermal) gold mineralization formed from a magmatic fluid.

키워드

참고문헌

  1. Geochemistry of hydrothermal ore deposits Suifide mineral stabilities Barton, P.B.Jr.;Skinner, B.J.
  2. Geochim. Cosmochim. Acta. v.28 The electrum tarnish method for the determination of the fugacity of sulfer in laboratory sulfide systems Barton, P.B.Jr.;Toulmin, P.Ⅲ
  3. Econ. Geol. v.61 Phase relations involving sphlerite in the Fe-Zn-S system Barton, P.B.Jr.;Toulmin, P.Ⅲ
  4. Geochim. Cosmochim. Acta. v.57 Revised equation and table for determining the freezing point depression of H₂O-NaCl Solutions Bodnar, R.J.
  5. Rev. Econ. Geol. v.2 Fluid inclusion systematics in epithermal systems Bodnar, R.J.;Reynolds, T.J.;Kuhen, C.A.
  6. Desalination v.16 The properties of hydrates of chlorine and Short dioxide Bozzo, A.T.;Chen, H.S.;Kass, J.R.;Barduhn, A.J.
  7. Mineralog. Assoc. Canada Short Course Handb. v.6 Analysis of phase equilibria in C-O-H-S fluid inclusions Burruss, R.C.
  8. Econ. Geol. v.74 Gas hydrates in CO₂-bearing fluid inclusions and the use of freezing data for estimation of salinity Collins, P.L.F.
  9. Geochim. Cosmochim. Acta. v.56 Stability of CO₂clathrate hydrate+CO₂liquid+CO₂vapour+aqueous KCI-NaCI solutions: Experimental determination and application to salinity estimations of fluid inclusions Diamond, L.W.
  10. Zeitschr. Neorganische. Khimii v.7 Preparation of sulfer dioxide for isotopic analysis Grinenko, V.H.
  11. Gold metallogeny and exploration Archaean lode gold deposits Groves, D.I.;Foster, R.P.
  12. Econ. Geol. v.56 Composition of fluid inclusions Cave-In-Rock fluorite district, Illinois and Upper Mississippi Valley zinc-lead district Hall, W.E.;Friedman, I.
  13. Econ. Geol. v.80 The importance of CO₂on freezing point measurement of fluid inclusions : Evidence from active geothermal systems and implications for epithermal ore deposition Hedenquist, J.W.;Henley, R.W.
  14. Acad. Sci. Paris Comptes Rendus v.294 Modelling of phase equilibria in the CO₂-CH₄below 50°C and 100 bar: Application to inclusion fluids Heyen, G.;Ramboz, C.;Dubessy, J.
  15. Geochim. Cosmochim. Acta. v.40 Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex Hollister, L.S.;Burruss, R.C.
  16. Report on the joints geological and mineral survey in Trabong-Tramy area, Quang Ngai-Quang Nam province, the Socialist Republic of Vietnam. Phase Ⅰ. KORES (Korea Resources Cooperation)
  17. Mineral Deposita v.28 Fluid evolution in a slate-belt gold deposit-a fluid inclusion study of the Hill End goldfield, NSW, Austrailia Lu, J.;Seccombe, P.K.
  18. Geochim. Cosmochim. Acta. v.43 Oxygen isotope fractionation in the system quartz-albite-anorthite-water Matsuhisa, Y.;Goldsmith, R.;Clayton, R.N.
  19. Jour. Chem. Physics v.18 The isotopic chemistry of carbonate and a paleotemperature scale McCrea, J.M.
  20. Econ. Geol. v.82 Fluid-wall rock interaction in an Archean hydrothermal gold deposit: A thermodynamic model for the Hunt mine, Kambalda Neall, F.B.;Phillips, G.N.
  21. Geochemistry of hydrothermal ore deposits Isotopes of sulfer and carbon Ohmoto, H.;Rye, R.O.;Barnes, H.L.(ed.)
  22. Rev. Mineralogy v.12 Fluid inclusions Roedder, E.
  23. Econ. Geol. v.92 Jurassic mesothermal gold mineralization of the Samhwanghak mine, Yongdong district, Republic of Korea: Constraints on hydrothermal fluid geochemistry So, C.S.;Yun, S.T.
  24. Geochemistry of hydrothermal ore deposits Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits Taylor, H.P.Jr.;Barnes, H.L.
  25. Econ. Geol. v.83 Fluid inclusion geochemistry of high-grade,vein-hosted gold ore at the Pamour mine, Porcupine camp, Ontario Walsh, J.F.;Kesler, S.E.;Duff, D.;Cloke, P.L.