초록
In GMAW, the spatters are generated according to the variation of the arc. Of the arc is stable, Few spatters are generated. But if unstable, too many spatters are generated. So, this means the spatters are dependent on the arc state. The aim of this study is to accurately estimate the arc state. To do this, the generated spatters were captured under the some welding conditions, and the waveforms of the arc voltage and welding current were collected. From the collected signals, the waveform factors and their standard deviations were extracted. Using these factors as input parameters of multi-layer artificial neural network, the learning for the weight of the generated spatters is performed and the estimation results to the real spatter are assessed. Obtained results are as follow: the linear correlation coefficient between the estimated result and the real spatters was 0.9986. And although the average convergence error was set 0.002, the estimated error to the real spatter was within 0.1 gr/min at each welding condition. In the estimation for the weight generated spatters, the result with multi-layer neural network was far better than with multiple regression analysis. Especially, even though under the welding condition which the arc state is unstable (the spatter is generated much more), very excellent estimation performance was shown.