L2 CHZE AT FelA8! X9l 88 335

z2ad JuAe 9% Faa" A9 L8

M &

L

2 %

Z2OPE UuAEE AYL 4 Ando] YFHoE Yoy HYolrt of ZRALE FYsE Z2IYWE FV)
ARAE (47 =& ARdte Ho| AHstn Ak o] =Ee 22 A& dY dAE HE7] A%
Aolth. 2 AY¥H T2 7Ied AF ZT2IY ol#ld 7N £ diFEY AH7R O £FEHE e o] £
€ Uiy Felagd Jgkg E Foln o] =FE ANolxd AR uny Fel2HE oo Z2aYPE twAs
= ZzagudA FAE 283 o= £& Fusle} d=x AUV dhe B Eolrh o =RAME o3 M &8
& oW Felagel dyss 2389 gl Z2AAAAM9 ALge] Zledn 1 gidle 1 ANES AHuoA
oA AMAgse WPt 21 A4E o8¢ Z2aY WY R2ETE Adstn E¥,

On the Application of Heuristic Knowledge
for Program Debugging

Dong-Geun Suh'!

ABSTRACT

The process of program debugging is essentially an intelligence intensive process. It is thought viable to develop a
knowledge-based tool to help programmer perform this process. This paper presents the design of such a system.
Unlike other knowledge-based debugging tools which are mostly based on formal program specification and automatic
program understanding, this tool is based on debugging heuristics. This tool is a debugging assistant which only
suggests the programmer in program debugging what and where to examine using the debugging heuristics stored in
the knowledge base. In this paper, a number of useful heuristic debugging knowledge are explained and their usage in
debugging process are described. Then, a scheme to organize the knowledge in the knowledge base and an intelligent
program debugging assistant using the knowledge are proposed and discussed.

1. Introduction

Program debugging is a process of detecting and
correcting an anomalous behavior of a program. It is
an integral part of programming tasks. Previous
studies showed that more than half of the software
development cost can be attributed to program valida-

t4 8 U ERgue JRIUY @y
=EHT 198 39 209, AR ¢ 1998 108 289

tion and debugging activities in general [12]. Though
program debugging accounts for significant amount
of software development cost, it has received rela-
tively little attention from the software engineering
research community. There is little formed theory or
systematic approach to guiding programmers to con-
duct debugging process. Nevertheless, almost every
software professional and every institution has accu-
mulated a large body of debugging heuristics.



336 SFEXN2US =X MHEA H22(392)

The process of program debugging consists of
two phases. The first phase is to understand the
underlying program and locate the program fault
that caused an anomalous behavior whereas the
second phase is to repair the fault and account for
the potential ripple effect. Nevertheless, it is the first
phase which generally accounts for 90 percent of a
debugging effort and hence the focus of all debug-
ging tools [15]. Although there is a variety of de-
bugging tools, most of them proceed as a passive
program tracer which basically preserves information
of current program execution in memory and allows
a programmer to break the execution and examine
the memory [2]. The more intelligent aspect of pro-
gram debugging such as determining where and what
to examine is entirely left for programmers to conduct.

Many attempts have been made to explore the
feasibility of developing a knowledge-based tool to
help perform program debugging. One major ap-
proach to developing such a system is based on
formal program specification and automatic program
understanding [9,13,16]. For instance, Proust takes as
input a program and a description of its require-
ments, and finds the most likely mapping between
the requirements and the code {9). This mapping is
in essence a reconstruction of the design and imple-
mentation steps in the program development. Pro-
gram fault is identified when the system can not
find possible mapping for some parts of the pro-
gram. This approach generally requires a very large
knowledge base and excessive processing time. As a
result, none of the systems based on this approach
has been applied in the field though tremendous
progress has been made in the past decade.

Anocther potential approach is to mimic common
debugging practices conducted by human experts
who do not usually attempt to understand the under-
lying program when encountered with a debugging
task. Rather, human experts mostly use intuitive
heuristic to detect and locate program faults based

on their observation on the anomalous program
behavior. A system developed using this approach
will act as an assistant which provides useful advice
to guiding a programmer to perform a debugging
task through frequent conversation with the pro-
grammer. When information about the buggy situa-
tion is provided, the system may suggest the pro-
grammer where and what to examine using the
debugging heuristics stored in its knowledge base.

It is our observation that most experienced pro-
grammers conduct debugging process using this
approach [20): Encountering with a debugging task,
an experienced programmer usually begins with
analyzing the observed program failure against the
intended program behavior. A number of hypotheses
regarding the potential locations and possible faults
can then be generated. Of all the hypotheses, the
programmer will select the most promising one
based on his’her experience and knowledge to
further examine. When the hypothesis is verified, so
is the program fault found. Otherwise, the infor-
mation generated in the previous step will be used
to improve the understanding of the program so as
to refine the set of fault hypotheses. These steps
will be repeated until the fault which caused the
failure in the program is identified. Potential de-
bugging heuristics used in these steps include: (1)
effective as well as efficient approach to understand
a buggy program and the observed anomalous
behavior; (2) good fault hypothesis set for each
specific program ; (3) potential fault locations with
respect to each hypothesis; (4) strategy or intuition
to select the most promising hypothesis and its
associated rationale; (5) the best approach to ex-
amine and verify a chosen hypothesis.

Experts of program debugging means those who
have more and effective heuristics to perform these
steps. Accordingly, if a software system which pos-
sesses these debugging heuristics can provide ap-
propriate knowledge to a programmer in a debug-



ging session, the burden of the programmer will be
reduced dramatically. The essential problem of
developing such a system is what the effective
knowledge is, how it can be organized and used to
help a debugging programmer. The objective of this
project is to develop an intelligent software assistant
for program debugging. Presented in this paper is a
proposed structure of the potential system. We will
first briefly explain a number of (identified so far)
useful heuristic debugging knowledge of the process.
The system structure that accommodates the know-
ledge discussed is then proposed. Finally, an ex-
ample of debugging cases that may be performed
under the proposed system is presented.

2. Related Works

To ease the burden of programmers in debugging,
several debugging tools were developed. In this
section, what kind of debugging tools were devel-
oped and how they are related to our approach are
explained.

2.1 Conventional Debugging Tools

The conventional debugging tools were designed
to help mainly the tracing method in the bug locat-
ing process. They are the only debugging tools
being used widely in practice. Symbolic debuggers
[2] incorporate breakpoint faciliies which allow the
programmer to specify instruction location (breakpoint)
where control is to be passed to the user’s terminal
during program execution. When execution is sus-
pended and control is passed to the user, he/she can
examine various components of the program state.
However, the other activities, e.g., what and where
to examine, which are more intelligent aspect of
program debugging, are entirely left for the pro-
grammer to conduct. Our approach, presented in this
paper, is trying to give advice to the programmer
about what and where to examine.

Some more recent approaches are using data flow

Z2OY CHge 2Igt Felas XN S& 337

analysis: data flow anomaly detector [8] and pro-
gram slicer [7,14,1521]. The former is to check data
flow anomalies such as uninitialized variables and
definitions of variables which are not subsequently
referenced. The latter shows the parts of a program
such that “starting from a subset of program’s
behavior, slicing reduces that program to a minimal
form which still produces that behavior [21]" , that
is to address the tracing method. The limitation of
the former is that the potential bugs that can be
detected are minimal. The limitation of the latter is
that, though it reduces the scope of the program for
the user to examine in the debugging process, it is
possible that the sliced program may include most
of the program code within it. These two approaches
give many clues to our research’ mainly for generat-
ing potentially faulty locations. In addition, our ap-
proach also uses program analysis information such
as the types of statements and types of variables
which can be produced as a by-product by the pro-
gram analyzer and program slicer.

2.2 Knowledge-based Debugging Tools

During past decade, several knowledge-based tools
were proposed and developed to help the program-
mer in debugging more intelligently or to automate
the debugging process. The knowledge used, ap-
proaches tackled, and emphases aimed by these tools
are all different.

® Program Analysis Approach

The systems analyze the entire program to
understand it and, in the consequence, find the bug
[1,9,13,22]. The knowledge base of the system holds
the programming models from the general design
knowledge and coding technique of some program-
ming languages. Using the programming models, a
program description is constructed from the analysis
of the actual program. This description will be
compared with another program description which is
constructed from the program specification. When
the two descriptions are compared and, if there is



338 SIRZEx2IEY =X MeH H2z=(992)

any discrepancy, then the fault finding step starts:
the part of program which is responsible for the
discrepancy will be searched back through the list of
reasoning. Since the computer should have every
knowledge and technique covering each application
domain and programming language to analyze a
program and to construct a proper description of the
program, the size of the knowledge base is very
large. Also, there may be many possible paths in
constructing those two program descriptions, so that
the computation cost is very high. As a result, it is
used only for debugging a toy program mainly in
the education environment.

® Using Description of Program failure

The system, Falosy [18], searches the program to
find chunks of the code in the program which are
faulty. The knowledge base of the system holds the
models of stereotyped bugs from programming
language knowledge and general programming know-
ledge. Using the bug models, the incorrect patterns
in the program is searched. Falosy takes as input
the program to be debugged and a manually pre-
pared list of output discrepancy. Using the de-
scription of output discrepancies, fault models (fault-
driven, function-driven, or computation-driven) are
triggered. Each fault model contains references to
the expected-defects (the models of stereotyped bugs).
Falosy searches where in the program the fault
model and expected-defects are implemented. That
is, an exhaustive search of the program for each
bug model is conducted. Though understanding the
entire program is not necessary in this approach,
sufficient understanding of each part of the program
must be achieved. This requires a large program-
ming knowledge base and control knowledge to
guide the partial understanding process and long
computation time (it blindly searches the entire pro-
gram to find the best match). Also, since the models
should be exact (not to give false alarm), repre-
senting the types of bugs has problems: there might
be large number of bug types (otherwise, very limited

bugs can be detected), obtaining the exact descrip-
tion of output discrepancy is also not easy. And,
actually, fault locating for only one type of program
failure (file-read-error) was designed. However, this
approach gave us a good insight of using debugging
heuristics (that is, the notion of stereotyped bugs).

® Internal Tracing Approach

The systems analyze the program (or program
behavior) and reduce the amount of information the
programmer still has to examine to localize a bug
(10,19]. One approach is using process-level depen-
dency information. For example, MTA [19] requires
two inputs: finite-state machine specification of the
process’ behavior and the interprocess message
trace. Each message contains the IDs of the sending
and receiving process, message type, message data,
and time stamp. The system examines the message
trace and outputs a list of suspicious process IDs
and the anomalies seen in the message trace. The
user will decide which process to focus and a
process will be localized when the process seems
solely responsible for the anomalies. In this ap-
proach, only process level localization is possible, if
processes interact in other ways (such as through
shared data) the bug localization performance will be
impaired, and representing the finite-state machine
description of processes will be hard for the pro-
cedure oriented program. Another approach is using
the statement-level dependency information. For ex-
ample, PELAS [10] requires two inputs: the failure
location and the source code. The program is re-
presented as a network of dependent statements
from the failure location. Using the program execu-
tion information, the system shows the value of a
variable in some statement which is in the scope of
dependency and asks whether it is correct or not at
that moment. When the user says the answer is
correct, the statement is dropped from dependency
list. When the answer is not correct, the fault is
localized (the statement contains the fault). In this
approach, the programmer should answer about the



correctness of the value of a variable, the system
didn’t address the intermodule dependency problem,
and if the error is a missing statement then it is
impossible to localize a statement which does not
exist. The main problem in this approach is that it
uses only one heuristic: process dependency or state-
ment dependency. Our approach will use as many
heuristics as possible.

3. Debugging Heuristics

Due to the tremendous variety of programming
languages, possible program errors, application do-
mains etc., it is essentially infeasible to cover all
theoretically infinite amount of debugging knowledge
and/or heuristics. In our approach, we consider only
domain independent debugging heuristics, and this
may give a framework to further identify and re-
present those domain specific debugging heuristics.
These debugging heuristics can be classified into
three categories: those to generate fault hypotheses,
those to select good hypotheses, and those to select
effective examining and verifying strategies and pro-
cesses. They are described in the following sections.

3.1 Heuristics of generating fault hypotheses

This type of heuristics is basically deduced from
knowledge that associates program s with possible
program faults. They can be further divided into
four classes.

® Programming language-based debugging heuristics

Every programming language has its own
features, limits, and constraints. Knowledge of these
features and constraints often give some clues to
help program debugging. For instance, when en-
countering with a divide-by-zero error in a (say,
Pascal} program, an experienced programmer will
consider some reasons such as variable aliasing, side
effect of subprogram calling, real to integer type
conversion that may cause a variable to become
zero. However, overloaded division operator in an

T2 MBS 2T FelLE KMo 88 339

expression will not be included since it doesn’t
happen in Pasaal. A simple representation of this
knowledge is shown in (Fig. 1)(a).

e Application domain-based debugging heuristics

Knowledge on the possible implementations of
underlying application domain is another source of
debugging heuristics. Due to large variety of appli-
cation domains, it is impossible to collect and store
all the knowledge pertaining to all application do-
mains. Nevertheless, human experts usually possess
knowledge of common domains. For instance, when
a sorting routine sorts a series of values into de-
scending order whereas the intended behavior is to
sort the list into ascending sequence, an expert would
immediately check the logical operator embedded in
the comparison statement (refer (Fig. 1) (b)).

(a) If Failure is Divide-By-Zero and
Language-Used is Algol-Family
Then Check-Aliasing and Check-Side-Effect and Check-
Type-Conversion.

(b) If Failure is Incorrect-Output and
Order-of-Output is reverse and
Application is Sorting
Then Check-Logical-Op-in-Comparison-Stmt.

(c) If Failure occurs at A-Line with A-Variable
Then Suspicious-Loc = Dependency(A-Line, A-Variahle).

(Fig. 1) Rules for Hypotheses Generation

® Programming-based debugging heuristics

There is no clear cut between knowledge of pro-
gramming language and that of general program-
ming expertise {4]. We regard programming know-
ledge as those concepts or common sense which can
be applied in programming for any programming
language. For instance, with the knowledge that a
loop construct must contain five components, when
encountering with an infinite loop error, an expe-
rienced programmer would check the use of loop
control variable(s): is it appropriately used? is it
incrementally updated, is it modified in a correct
direction?



340 SRFEXN2IRD =2X M6H M2=(99.2)

® Run-time enwironment based debugging heuristics
A program runs in a computing environment.
Each environment has its own architecture, capa-
bility, and restrictions. A program must fit into its
run-time environment in order to execute correctly.
Some program s may be caused by incompatibilities
to its run-time environment. Samples of run-time
errors which are common to most environments
include segment fault, incorrect file I/O, miscalcula-
tion of machine precision, arithmetic overflow, etc.

® (reneral program information

Components of a program are generally bound
together with one another through various connec-
tions. These connections are called program depen-
dencies. Since program dependency represents se-
mantic relationship between connected components, it
has been widely suggested to be used in software
maintenance tasks [3,7,14,15,21]. Moreover, it was
indicated that this type of information is often used
by human experts in tracing a program to find
potential faults in a debugging process[14,15) (refer
(Fig. 1) (c)).

32 Heuristics of selecting fault hypotheses

After generating a set of fault hypotheses, an ex-
perienced programmer usually uses his/her know-
ledge or experience with the software product to select
the most promising one to pursue further. This
process will be repeated until either the fauit is
located or the entire set is exhausted. The know-
ledge generally used for this purpose is described in
the following.

® Most frequently occurring program faults
Psychological studies showed that programmers
make mistakes more often in handling some pro-
gramming constructs, e.g., pointer, while loop, etc.
than others [517]. Therefore, it would be more
promising to select a hypothesis that involves error-
prone programming constructs than those with others.
Additionally, it will be more productive to select

those hypotheses that are associated with the er-
rors that the original programmer committed most
frequently. Of course, this type of information can
only be obtained after observing the dynamic be-
havior of the underlying program for some period. A
simple representation of this knowledge is shown
in (Fig. 2)X(a).

(a) If Fault-A and Fault-B are In(List-of-fault-Hypotheses)
and
Fault-A Frequency > Fault-B.Frequency
Then Check Fault-A first.

(b) If Failure-X occured and
Fault-A and Fault-B are In(List-of-fault-Hypotheses)
and
(Failure- X, Fault-A) Frequency > (Failure-X Fault-B).
Frequency
Then Check Fault-A first.

(c) If Suspicious-Locations is known and
Traced-Locations is known
Then Suspicious-lLocations = Suspicious-Locations
-Traced-Locations

(Fig. 2) Rules for Hypotheses Selection

® Most frequently occurring program fault-failure

pattern

Moreover, the knowledge of most frequently oc-
curring faults for a specific program failure provides
another clue to select good fault hypotheses. How-
ever, it requires long time experience and in-depth
analysis to obtain such knowledge. A way to represent
this knowledge can be as the one in (Fig. 2)(b).

® Dynamic program information
The dynamic information of a buggy program often

provides another source from which human experts

draw heuristic to select good fault hypotheses. In
specific, the following information is often used for
this purpose,

- Program execution profile: Program execution
profile is comprised of the information as to which
modules actually executed during a particular
running session. With this information in mind, an
experienced programmer can effectively reduce the



amount of information to examine in order to
identify and locate a program bug [(10,14] (refer
(Fig. 2) (ch.

Program evolution information: It is known that
errors are more likely to occur in those modules
which have gone through recent modifications
than others [5). Accordingly, the information of
recently modified modules provides useful clue to
select fault hypotheses.

- Program testing and debugging information:
Another rationale regarding program errors is that
a module which was reported and detected errors
recently are more likely to contain some other
undetected errors [5]. Therefore, those modules with
recent error report should be examined first in
selecting a fault hypothesis.

3.3 Heuristics of selecting effective strategy and
examining process

Following selecting a fault hypothesis, an expert
will use the most effective method to verify it
There are a variety of methods that human experts
usually use to verify fault hypotheses: (1) visually
reading and inspecting the code, (2) executing the
program with designed inputs, (3) inserting defen-
sive statements into the program and examining the
execution result, and (4) setting up break points for
an execution session and examining the values of
some specific variables. It is noted, however, it is
unlikely that a programmer will read and inspect the
entire code when debugging a large-scale software.
Rather, they usually use some other information such
as dependency information to localize the scope of
code that is relevant for inspection. Familiarity to a
debugging tool also affects the way to choose an
effective method to verify a fault hypothesis.

Some of the knowledge in this category can be
represented explicitly as rules whereas others can be
realized in the reasoning mechanism of the intel-
ligent debugging assistant software. Also, this type
of knowledge will affect the organization of the

Z20Y CHEE 21T 72|28 XA 88 34

knowledge base and the extra service the system
will render to the prospective users. In the next
section, the design of a knowledge-based debugging
assistant is presented and discussed that will ac-
commodate all the above mentioned three categories
of debugging heuristics.

4. Debugging Assistant System

In this section, we present the design of a
knowledge based debugging assistant based on the
heuristics discussed in the previous section. Shown
in (Fig. 3) is the architecture of the potential intel-
ligent debugging assistant. ‘The entire software is
comprised of four components: a set of tools to
analyze the underlying buggy program to collect
such information as program dependence, complexity
of modules, etc., and to collect various information
about the buggy program such as program execution
profile and program evolution information; a data-
base to store the analyzed and collected program
information; and a knowledge base to store all types
of debugging heuristics. In particular, a debugging
assistant component is designed to interface with the
prospective users to guide them in conducting a
debugging process. This assistant component will
contain knowledge reasoning mechanisms and its
own knowledge base in order to effectively process

the heuristics stored in the knowledge base.

Various Debugging Working
Program tools Assistant memory
Program Debugging

Data base Knowledge base

(Fig. 3) Program debugging environment

4.1 Organization of the knowledge base

As shown in (Fig. 4), the knowledge base de-
signed for this intelligent debugging assistant is
organized into seven components. The arrows in the
figure indicate the interconnections between these



32 BRFHEX2RS =FX MET H22(99.2)

components. Since a debugging process usually starts
with understanding of an observed failure and pro-
ceeds toward the identification of associated program
faults, these seven knowledge components are further
organized into four layers to reflect the debugging
process.

isa isa
caused-by
Program > Program
Failure Fault

processed-by

Generating H. Selecting H.

uses

Procedural Knowledge

uses

Program Information J

(Fig. 4) Debugging heuristics organization

In the top layer of the knowledge base, the pro-
gram failure component and program fault com-
ponent reside. Program failure component holds the
information of all possible program failures and their
respectively associated potential program faults. To
facilitate its processing of the stored knowledge, this
component is further organized into a hierarchy. At
the top level, all program failures are classified into
two categories: system detectable failure, and user
observed failure. Each of these categories is clas-
sified further: system detectable failure can be
further classified into I/O failure, index related
failure, arithmetic failure which is again divided into
arithmetic overflow, divide-by-zero, and neguative
argument failure, and so forth; user observed failure
can also be divided into incorrect result, irfinite
loop, etc. Each failure in this component is asso-
ciated with a set of potential faults that may cause
the failure. Each fault with a failure is given a
weight index to indicate the likelihood of the fauit to
cause the failure. Additional properties associated

with each failure are its description of anomalous
behavior, the location the failure occurred (it will be
known during debugging), generating heuristics,
selecting heuristics, etc. A subclass of a program
failure will inherit the properties of its super class
and may have its own properties. If more
information is known for a program failure during
debugging process, the more specific failure class
will be matched and more specific debugging
heuristics will be generated.

Program fault component stores all potential
program faults (which will grow along with the use
of the knowledge base). To facilitate its processing
of the stored knowledge, this component is also
organized into a hierarchy: at the top level, all pro-
gram faults are classified into four categories
(application domain dependent fault, programming
language dependent fault, programming dependent
fault, run time environment dependent fault), and
each of these categories is classified further (for
example, programming dependent fault is classified
into control structure related fault, value assignment
related fault, and user defined data structure related
faudt). Combining an observed program failure and
potential faults generates a set of fault hypotheses.
However, there is no clear relationship between pro-
gram failures and program faults [6]. Each program
failure may be associated with more than one po-
tential fault and vice versa. For instance, unini-
tiglized variables and variable type mismatch faults
are both potential causes for both divide-by-zero
and incorrect result failures. Associated with each
program fault is a weight to indicate how often this
fault was committed and detected within this
particular buggy program, and a set of strategies
and methods, which may be applied on the un-
derlying buggy program to identify potential fault
locations. Each strategy and method is also given a
weight index to indicate its priority of being used to
verify the associated fault hypothesis. Similar to
program failure component, program faults in this



component is also organized into a hierarchy of
classes such as programming language related faults,
application domain related faults, programming
related faults, etc.

Sitting in the second layer are generating heuri-
stics, selecting heuristics, and strategy & method.
The generating heuristics component contains the
knowledge to generate all possible program fault
hypotheses: suspicious program faults and suspicious
locations at which some program faults may reside.
Since the description of a program failure may need
more than one information and more detailed
information about program failure may generate
better fault hypotheses set, this component contains
those knowledge to accommodate incomplete infor-
mation situation and refinement of program failure.

The selecting heuristics component contains all
the heuristic knowledge pertaining to the selection of
most promising fault hypothesis from a given set.
This selecting heuristic is generally stored as meta
rules that uses such information as failure-fault
weight, fault occurrence weight, to select the ap-
propriate fault hypothesis for further pursuing. In
addition to selecting fault hypothesis, this compo-
nent also stores heuristics to select appropriate loca-
tion to examine during the hypothesis verifying
process. This type of knowledge will be discussed
further later on.

Strategy & method component stores knowledge
pertaining to the process of verifying each fault
hypothesis. Each strategy and/or method stored in
this component is associated with a number of
procedures or subprograms for verifying the asso—
ciated fault. For example, the program fault, input
data error, can be verified when the following three
conditions are satisfied: (1) there is an input
statement; (2) the value of the actual input data is
wrong, and (3) the input data is used directly or
indirectly that caused an observed program failure.

2O CIHBE 2T FelLs XN S8 343

Three different procedures are clearly needed to
complete this verification process.

The third layer consists of procedural knowledge
component. This component stores a number of
procedures and subprograms that are triggered by
the components in the second layer to generate
potential fault locations using program information
stored in the database and to get other program
information such as the types of statements and
types of variables.

The bottom layer is program information com-
ponent which holds such information as program
execution profile, debugging history that includes the
types of program failures occurred and their re-
spective faults detected, modules in which faults
were detected and repaired, modules recently modi-
fied etc.

When a triggered procedure generates a number
of potential fault locations, it is the meta rules
stored in the selecting heuristic component to select
the first location to examine using the information
from the program information component as the
selection criteria. The use of the knowledge de-
scribed above and the debugging process that will
be conducted by the software debugging assistant
will be further discussed in the next section.

4.2 Debugging Assistant

Of all the components, the debugging assistant
lies in the front-end of the system. Not only does it
serve as the interface with the user, but it also
triggers and coordinates the operations of other
components in the knowledge base (KB). More im-
portantly, it reasons the knowledge stored in
different components of the KB, and provides guid-
ance, and explanations in helping a programmer to
perform a debugging process. The entire debugging
process starts with an instantiation of a program
failure and ends with satisfactory finding of a



344 SIIAYEXNIIRD =2X M6 M25(98.2)

possible program fault. (Fig. 5) shows the inter-
action of a programmer with the debugging as-
sistant during a debugging process.

PROGRAMMER SYSTEM
S call with bupgy progas Sn
u.Lu favge denaipin u-i—uuu
tadere.
l, (gpecrascd bypethescs set r.-imm—n
T —
‘;’::u ¥ AR wocemod o
i — ”i"."
e / Seloct -
i y
Venfy ‘Tecmansond Vetify hypothosss
ypothems Rypctues . l
l Hypothesis verfied
y N
(e ¥ .
- ”"L:""‘ e morrmaton ln _-3
Fowasion Reline Failere
. .L (vefmod ypetieses st}
ypotheses

(Fig. 5) Debugging process with Debugging Assistant

To begin the debugging process, the system
takes a buggy program as input. Tools such as
program dependency analyzer and dataflow anomaly
detector are then activated to analyze the underlying
program. Information including control flow, data
flow, and data dependence, etc., of the program will
be collected and stored in the database (DB)
component. Should there exist program debugging
history information, it will be loaded and stored into
the program information (PINFO) component. Fault
rate for each program failure will be loaded into the
progran fault (PFT) component. The debugging
assistant (DAS) component is then activated.

Through a series of interactions with the user,
the DAS obtains an observed program failure and
possibly an error location depending on if the failure
was detected by the system. Using generating
heuristic (GH), the failure will be mapped into the
program failure (PFL) component to generate a
number of potential faults for this failure that forms
the set of fault hypotheses. After storing the hy-
potheses into the working memory, the DAS then

activates the selecting heuristic (SH) component.
The SH component first prioritizes all the hy-
potheses in the given set using the weight indices
associated with both failure-fault association and
fault itself. The most promising hypothesis (or
hypotheses) will then be selected. Next, the selected
hypotheses will be mapped into the PFT component
that generates a number of methods and procedures
to be carried out to venfy the selected hypothesis. If
there exists more than one strategies for verifying a
hypothesis, it is again up to the SH component to
use its meta rules and some priority setting scheme
to select the best strategy for further pursuing.

After the strategy and methods are determined,
the procedures stored in the procedural knowledge
(PK) component are activated. These procedures use
the observed failure location together with the
program static information, e.g., data dependence,
control dependence, which is stored in the DB, to
generate a set of potential fault locations. The SH
component will then select and suggest the most
promising location to pursue using -the program
debugging history information stored in the PINFO
component. It is noted, however, if these exists more
than one selected promising hypothesis (a tie in
priority, for example), after generating locations to
be examined, the SH may use the information in the
PINFO to further select as to which hypothesis to
pursue first. Furthermore, there may be a case in
which no possibly examined locations can be
generated. For example, the programmer observed an
infinite loop symptom from the program execution
but had no clue as to where it occurred. Upon this
situation, it is the meta rule of the SH to suggest
the programmer a number of methods to further
examine the program in order to collect more
information of the program’s dynamic behavior.

During the knowledge inference process, the
programmer will be notified of all the decisions
made by the intelligent assistant and will have the



power to intervene the operation of the DAS to
select a different hypothesis or different examining
location to pursue. After examining a location or
verifying a hypothesis, the user should feed in the
DAS of further information so that the DAS is able
to mark some of the information in the working
area and pursue next hypothesis or next examining
location so as to generate new examining locations
and/or new hypotheses. This process will continue
until either the DAS is informed by the user that a
possible fault and its location have been identified or
the user choose to abort the process. The DAS will
then store this debugging information into the
PINFO and terminate the process.

5. Conclusion and Future Research

Program debugging is essentially an intelligence
intensive process. It is thought viable to develop an
intelligent tool to assist programmer in performing
this process. Presented in this paper is the design of
such a tool. This proposed intelligent debugging
assistant is designed based on the process which
human experts usually take and the heuristics they
usually use in performing a debugging process. Sev-
eral classes of debugging heuristics including those
for generating fault hypotheses, those for selecting
promising fault hypotheses, and those for proposing
effective strategies as well as methods for verifying
hypotheses, are presented. A scheme to organize all
of the heuristics into a knowledge base and their
respective interactions with other knowledge is also
presented and discussed. This software can be
extended to incorporate the formal approach to
become an effective intelligent tool for high level
program debugging. It can also be integrated with
other maintenance tools to establish a true intelligent
environment to assist in software maintenance. Cur-
rently we are in the process of implementing a proto-
type of this intelligent program debugging assistant.

After the prototype is implemented, we will

ZZO0Y CIHZE RS FElIAE! XN S& 346

conduct some experiments to examine the effec-
tiveness of this approach. In the meanwhile, we will
also conduct an investigation to determine the total
percentage of heuristics being used in program de-
bugging in the real world. It is also interesting to
know how heuristic is mixed with formal program
understanding in the debugging cases.

References

[1] A, Adam and ]. P. Laurent, "Laura, a System
to Debug Student Programs,” Artificial Intel-
ligence, pp.75-122, Nov. 1980

(2] A. Cargill, "Implementation of Blit Debugger,’
Software: Practice and Experience, Vol.1%2),
pp.153-168, Feb. 1985.

[3] Pao S. Chang, "Some Measures for Software
Maintainability,” PhD Dissertation, Northwest-
e University, June 1987.

[4] M. Ducasse. A.-M. Emde, "A Review of Auto-
mated Debugging Systems: Knowledge, Strate-
gies and Techniques,” Proc 10th International
Conf. on Software Engineering, pp.162-171, Apr.
1988,

[5] A. Endres, "An Analysis of Errors and Their
Causes in System Programs,” IEEE Trans. on
Software Engineering, pp.140-149, June 1975.

[6] W. C. Gramlich, "Debugging Methodology (Panel
Session Summary),” Proc o the ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on
High-Level Debugging, pp.1-3, Aug. 1983.

(7] S. Horwitz, P. Pfeiffer and T. Reps, "Inter-
procedural Slicing Using Dependence Graphs,”
ACM Transactions on Programming Languages
and Systems, pp.26-60, Jan. 1990

[8] J. Jachner and V. K. Ararwal, "Data Flow
Anomaly Detection,” IEEE Trans. Software En-
gineering, pp. 432-437, July 1984,

[9) W. L. Johnson and E. Soloway, "Proust:
Knowledge-Based Program Understanding,” /EEE
Trans. Software Engineering, pp.267-275, March
1985,




M6 SZHEXNEIER =2X H6D M2z(99.2)

[10] B. Korel, “PELAS-Program Error-Locating Assis-
tant System,” IEEE Transactions on Software
Engineering, pp.1253-1260, Sept. 1988.

[111 S. Leestma and L. Nyhoff, Pascal: program-
ming and problem solving, Macmillan Publish-
ing Co. New York, 1984,

[12) Bennet P. Lientz, "Issues in Software Mainte-
nance,” ACM Computing Surveys, pp.271-278,
Sept. 1983.

[13] F. J. Lukey, “Understanding and Debugging Pro-
grams,” Int. Journal of Man-Machine Studies,
Vol.12, No.2, pp.189-202, Feb. 1980.

[14] ]J. R. Lyle, "Evaluating Variations on Program
Slicing for Debugging,” PhD Dissertation, Uni-
versity of Maryland, 1984.

(15 G. J. Myers, "The Art of Software Testing,”
Wiley -Interscience, New York, 1979.

[16] A. Podgurski and L.A. Clarke, "A Formal Model
of Program Dependencies and Its Implications
for Software Testing, Debugging, and Main-
tenance,” IEEE Trans. on Software Engineer-
ing, pp.965-979, Sept. 1990.

[17] C. Rich and Y.A. Feldman, "Seven Layers of
Knowledge Representation and Reasoning in
Support of Software Development,” IEEE Trans.
on Software Engineering, pp.451-469, June 1992.

[18] N. F. Schneidewind and H.-M. Hoffmann, "An
Experiment in Software Error Data Collection
and Analysis,” IEEE Transactions on sdftware
Engineering, Vol.SE-5, No.3, pp.276-286, May
1979.

[19] R. L. Sedimeyer, W. B. Thompson, and P. E.
Johnson, "Knowledge-based Fault Localization in

Debugging,” Proc. of the ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on
High-Level Debugging, SIGPLAN notices, Vol.
18, No.8, pp.25-31, Aug. 1933.

[20] R. E. Seviora, "Knowledge-based Program De-
bugging Systems,” IEEE sdftware, pp.20-32, May
1987.

[21] M.-E. Suh, “On Knowledge Based High Level
Program Debugging Using Heuristics,” PhD
Dissertation, University of Oklahoma, 1995.

[22] M. Weiser, "Program Slicing,” /EEE Tran Sdft-
ware Engineering, SE-10, pp.352-357, July 1984.

[23] H. Wertz, "Stereotyped Program Debugging: An
Aid for Novice Programmers,” International
Journal of Man-Machine Studies, Vol.16, 1982,

M8 32

e-mail : dkseo@tmic.tit.ac kr

1979 w3 ddn wo| ot
EA A

19849 meldistm gy xojx
£ A

1990%d University of Oklahoma,
Dept. of Computer Science
(F84AH

1995'3 University of Oklahoma, Dept. of Computer
Science(F ¥HAh)

19959 19953 Knowledge Systmes Institute 25

1995 19973 X2 djo|el(F) AYPHEE

19973~ FHARASHE AYZAL

BARol: AXEYe)FH LZEHo]EATE, A4

2R, 24X



