CONDITIONAL EXPECTATIONS GENERATING THE COMMUTANTS OF SUBALGEBRAS OF L^{∞}

ALAN LAMBERT

ABSTRACT. Given a probability space and a subsigma algebra \mathcal{A} , each measure equivalent to the probability measure generates a different conditional expectation operator. We characterize those which act boundedly on the original L^2 space, and show there are sufficiently many such conditional expectations to generate the commutant of $L^{\infty}\left(\mathcal{A}\right)$.

Let (X, \mathcal{F}, μ) be a probability space, and let \mathcal{A} be a sigma subalgebra of \mathcal{F} . All measure spaces encountered in this note are assumed to be complete, and all set, function, etc statements are to be interpreted as holding up to sets of μ measure 0. We are concerned here with linear operators acting on $L^2(\mathcal{F}) = L^2(X, \mathcal{F}, \mu)$. For $f \in L^{\infty}(\mathcal{A})$, let M_f be the operator of multiplication by f, acting on $L^2(\mathcal{F})$. Similarly, for an \mathcal{F} -measurable function f, L_f is the (in general, unbounded) linear transformation of multiplication by f, with domain $\{g \in L^2(\mathcal{F}) : fg \in L^2(\mathcal{F})\}$. Define

$$\mathcal{L}^{\infty}\left(\mathcal{A}\right)=\left\{ M_{f}:f\in L^{\infty}\left(\mathcal{A}\right)\right\} ,$$

so that $\mathcal{L}^{\infty}(\mathcal{A})$ is a von Neumann subalgebra of the maximal abelian von Neumann algebra $\mathcal{L}^{\infty}(\mathcal{F})$. $(\mathcal{L}^{\infty}(\mathcal{A}))'$ is then defined as the commutant of $\mathcal{L}^{\infty}(\mathcal{A})$; that is, the collection of all bounded operators commuting with all $L^{\infty}(\mathcal{A})$ multiplications.

The symbol $E_{\mu}^{\mathcal{A}}$ represents the conditional expectation operator with respect to \mathcal{A} . As an operator on $L^2(\mathcal{F})$, it is the orthogonal projection onto $L^2(\mathcal{A})$ (viewed as a Hilbert subspace of $L^2(\mathcal{F})$), but $E_{\mu}^{\mathcal{A}}f$ is also defined for f in any $L^p(\mathcal{F})$, $1 \le p \le \infty$, as well as for any $f \ge 0$ a.e. Since we will only be concerned with measures absolutely continuous with respect to μ , we will often write $E^{\mathcal{A}}$ for $E_{\mu}^{\mathcal{A}}$.

Received June 8, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 47C15, 47B38.

Key words and phrases: conditional expectation, sigma algebras, commutants.

In [1], R. G. Douglas characterized contractive projections on $L^1(X, \mathcal{F}, \mu)$ in terms of conditional expectations and weight functions. In that work, a nonnegative function w is called a weight function for \mathcal{A} if E^A_μ w is the characteristic function of a set A (necessarily in \mathcal{A}). The corresponding weighted conditional expectation operator is then given by the rule $f \to w \cdot E^A_\mu f = L_w E^A_\mu f$. We shall see shortly that such operators are the adjoints of certain conditional expectations E^A_ν . Although we will not examine properties of the collection of weight functions in detail in this note, it may be worth noting that for any nonnegative function f with $E^A_\mu f < \infty$ a.e., the function $\frac{f}{E^A_\mu f} \cdot \chi_{\text{support } E^A_\mu f}$ is a weight function for \mathcal{A} , and all weight functions have this form.

In [3] we examined the set

$$\begin{split} \mathbb{L} &= \mathbb{L}\left(\mathcal{A}\right) = \mathbb{L}\left(\mathcal{A}, \mathcal{F}, \mu\right) \\ &= \left\{ f \in L^2\left(X, \mathcal{F}, \mu\right) : f \cdot L^2\left(X, \mathcal{A}, \mu\right) \subset L^2\left(X, \mathcal{F}, \mu\right) \right\}. \end{split}$$

 $\mathbb{L}(A)$ is seen to be a Hilbert $L^{\infty}(A)$ -module, with inner product

$$\langle f, g \rangle_{\mathbb{T}} = E^{\mathcal{A}} \left(\bar{f} \cdot g \right).$$

The following two results are established in that paper:

PROPOSITION 1. $L^{\infty}(\mathcal{F}) \subset \mathbb{L}(\mathcal{A}) \subset L^{2}(\mathcal{F})$, and $f \in \mathbb{L}(\mathcal{A})$ if and only if $E^{A}|f|^{2} \in L^{\infty}(\mathcal{A})$. For $f \in \mathbb{L}$, the corresponding multiplication operator from $L^{2}(\mathcal{A})$ to $L^{2}(\mathcal{F})$ is continuous, with operator norm $\left(\left\|E^{A}|f|^{2}\right\|_{\infty}\right)^{1/2}$. In particular, \mathbb{L} is a Banach space with respect to the norm $\|f\|_{\mathbb{L}} = \left(\left\|E^{A}|f|^{2}\right\|_{\infty}\right)^{1/2}$.

PROPOSITION 2. Let T be a continuous linear transformation on $L^{2}(\mathcal{F})$. Then the following are equivalent:

- a) $T \in (\mathcal{L}^{\infty}(\mathcal{A}))'$
- b) There is a constant C such that, for every $f \in L^2(\mathcal{F})$,

$$E^{\mathcal{A}}\left(|Tf|^2\right) \leq C \cdot E^{\mathcal{A}}\left(|f|^2\right) \ a.e.$$

c) For each $f \in L^2(\mathcal{F})$ there is a constant C_f such that

$$E^{\mathcal{A}}\left(\left|Tf\right|^{2}\right) \leq C_{f} \cdot E^{\mathcal{A}}\left(\left|f\right|^{2}\right) \ a.e.$$

d) For each $f \in L^2(\mathcal{F})$, support $Tf \subset \text{support } E^{\mathcal{A}}|f|$.

e) For each $f \in L^2(\mathcal{F})$, define the measure μ_f on \mathcal{A} by

$$d\mu_f = |f|^2 \, d\mu|_{\mathcal{A}}.$$

Then for all f, $\mu_{Tf} \ll \mu_f$.

Moreover, with \mathbb{L} and $\| \|_{\mathbb{L}}$ as defined previously, for $T \in (\mathcal{L}^{\infty}(\mathcal{A}))'$ we have $T\mathbb{L} \subset \mathbb{L}$, and T is continuous with respect to $\| \|_{\mathbb{L}}$.

Various Hilbert C*-module results are then used to give related characterizations of $(\mathcal{L}^{\infty}(\mathcal{A}))'$. Our main goal in this work is to present a set of conditional expectation operators related to $\mathbb{L}(\mathcal{A})$ which generates $(\mathcal{L}^{\infty}(\mathcal{A}))'$ in the following sense:

The statement "S generates $(\mathcal{L}^{\infty}(\mathcal{A}))'$ " means S is a set of bounded operators on $L^{2}(\mathcal{F})$, and the smallest von Neumann algebra containing S is $(\mathcal{L}^{\infty}(\mathcal{A}))'$

Let $\mathcal{E}(\mu)$ be the set of all finite measures on \mathcal{F} which are absolutely continuous with respect to μ . It is shown in [L1] and [L, W], respectively, that for $\nu \in \mathcal{E}(\mu)$,

(i) support $(E_{\mu}^{\mathcal{A}}|f|)$ is the smallest set in \mathcal{A} containing support f.

(ii) For
$$\nu \in \mathcal{E}(\mu)$$
, $E_{\nu}^{\mathcal{A}}(f) = \frac{E_{\mu}^{\mathcal{A}}(\frac{d\nu}{d\mu} \cdot f)}{E_{\mu}^{\mathcal{A}}(\frac{d\nu}{d\mu})}$.

Since $\frac{1}{E_{\mu}^{A}(\frac{d\nu}{da})}$ is A-measurable, (ii) may be rewritten as

$$E_{\nu}^{\mathcal{A}}(f) = E_{\mu}^{\mathcal{A}}\left(\frac{d\nu/d\mu}{E_{\mu}^{\mathcal{A}}(d\nu/d\mu)}\cdot f\right).$$

It follows from (i) that for any $f \geq 0$ but not 0 a.e., we may define $\Lambda(f) = \Lambda_{\mu}^{\mathcal{A}}(f) = \frac{f}{E^{\mathcal{A}}(f)}$; and we see that $E^{\mathcal{A}}(\Lambda_{\mu}^{\mathcal{A}}(f)) = \chi_{\text{support } E^{\mathcal{A}}(f)}$.

In general, for $\nu \in \mathcal{E}(\mu)$, E_{ν}^{A} need not be a bounded operator on $L^{2}(X, \mathcal{F}, \mu)$. In fact, such boundedness is directly tied to $\mathbb{L}(A, \mu)$:

THEOREM 3. Let $\nu \in \mathcal{E}(\mu)$. Then $E_{\nu}^{\mathcal{A}}$ is bounded on $L^{2}(X, \mathcal{F}, \mu)$ if and only if $\Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}$. If $E_{\nu}^{\mathcal{A}}$ is bounded on $L^{2}(X, \mathcal{F}, \mu)$ then its adjoint is given by the formula $f \to \Lambda\left(\frac{d\nu}{d\mu}\right) \cdot E_{\mu}^{\mathcal{A}} f$.

Proof. Suppose first that $\Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}$; i.e., $E^{\mathcal{A}}\left(\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)^2\right) \in L^{\infty}$. For f in $L^2(\mathcal{F},\mu)$,

$$\left| E_{\mu}^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \cdot f \right) \right|^{2} \leq \left(E_{\mu}^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \right)^{2} \right) \cdot E_{\mu}^{\mathcal{A}} \left(|f|^{2} \right) \ a.e.$$

$$\leq \left\| \Lambda \left(\frac{d\nu}{d\mu} \right) \right\|_{L}^{2} \cdot E_{\mu}^{\mathcal{A}} \left(|f|^{2} \right) \ a.e.$$

Hence

$$\begin{aligned} \left\| E_{\mu}^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \cdot f \right) \right\|_{L^{2}}^{2} & \leq & \left\| \Lambda \left(\frac{d\nu}{d\mu} \right) \right\|_{\mathbb{L}}^{2} \cdot \left\| E_{\mu}^{\mathcal{A}} |f|^{2} \right\|_{L^{1}} \\ & = & \left\| \Lambda \left(\frac{d\nu}{d\mu} \right) \right\|_{\mathbb{L}}^{2} \cdot \left\| |f| \right\|_{L^{2}}^{2}. \end{aligned}$$

Note that

$$\begin{split} \int_{\mathbf{X}} \left| \Lambda \left(\frac{d\nu}{d\mu} \right) \cdot E^{\mathcal{A}} f \right|^2 d\mu & \leq \int_{\mathbf{X}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \right)^2 \cdot E^{\mathcal{A}} \left(|f|^2 \right) d\mu \\ & = \int_{\mathbf{X}} \left(E^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \right)^2 \right) \cdot \left(|f|^2 \right) d\mu \\ & \leq \left\| \Lambda \left(\frac{d\nu}{d\mu} \right) \right\|_{\mathbf{I}}^2 \cdot \|f\|_{L^2}^2; \end{split}$$

so that the linear transformation G given by the formula $Gf = \Lambda\left(\frac{d\nu}{d\mu}\right) \cdot E_{\mu}^{\mathcal{A}}f$ is bounded on $L^{2}\left(\mathcal{F},\mu\right)$. In fact, G is the adjoint of $E_{\nu}^{\mathcal{A}}$. To see this, let ϕ be a nonnegative, essentially bounded, \mathcal{F} -measurable function for which $\phi \cdot \Lambda\left(\frac{d\nu}{d\mu}\right) \in L^{2}\left(\mathcal{F},\mu\right)$ (The set of such ϕ has dense linear span since $\Lambda\left(\frac{d\nu}{d\mu}\right)$ is finite a.e.). Then for $f \in L^{2}\left(\mathcal{F},\mu\right)$,

$$\begin{split} \langle Gf, \phi \rangle_{L^2} &= \int_{\mathcal{X}} \Lambda \left(\frac{d\nu}{d\mu} \right) \cdot E_{\mu}^{\mathcal{A}} f \cdot \phi d\mu \\ &= \left\langle f, E_{\mu}^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \cdot \phi \right) \right\rangle_{L^2}. \end{split}$$

This shows that $G^*\phi = E^{\mathcal{A}}_{\mu}\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\cdot\phi\right)$, and this formula extends to all $\phi\in L^2$.

Now suppose only that $E_{\nu}^{\mathcal{A}}$ is bounded on $L^{2}(\mathcal{F},\mu)$. For f and g in $L^{2}(\mathcal{F},\mu)$, with $\Lambda\left(\frac{d\nu}{d\mu}\right)\cdot f$ in $L^{2}(\mathcal{F},\mu)$, we have the $L^{2}(\mathcal{F},\mu)$ inner product chain of equalities

$$\langle E_{\nu}^{\mathcal{A}} f, g \rangle = \left\langle E_{\mu}^{\mathcal{A}} \left(\Lambda \left(\frac{d\nu}{d\mu} \right) \cdot f \right), g \right\rangle$$

$$= \left\langle \Lambda \left(\frac{d\nu}{d\mu} \right) \cdot f, E_{\mu}^{\mathcal{A}} g \right\rangle.$$

Since there is a dense set of such functions f, it follows that $E_{\nu}^{\mathcal{A}*}g = \Lambda\left(\frac{d\nu}{d\mu}\right) \cdot E_{\mu}^{\mathcal{A}}g$. But this implies that $\Lambda\left(\frac{d\nu}{d\mu}\right) \cdot L^{2}\left(\mathcal{A},\mu\right) \subset L^{2}\left(\mathcal{F},\mu\right)$, and that is precisely the condition for $\Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}$.

REMARKS. (1) When different measures are in play, care must be taken in working with conditional expectations. For example, when working on $L^2(X, \mathcal{F}, \mu)$, bounded E_{ν}^A need not be contractive or self adjoint. However E_{ν}^A does retain its projection status:

$$E_{\nu}^{\mathcal{A}}\left(E_{\nu}^{\mathcal{A}}f\right) = E_{\mu}^{\mathcal{A}}\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\cdot\left(E_{\mu}^{\mathcal{A}}\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)\cdot f\right)\right)$$

$$= \left(E_{\mu}^{\mathcal{A}}\Lambda\left(\frac{d\nu}{d\mu}\right)\right)\cdot E_{\mu}^{\mathcal{A}}\left(\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)\cdot f\right)$$

$$= \chi_{\text{support }E_{\mu}^{\dagger}\frac{d\nu}{d\mu}}\cdot E_{\mu}^{\mathcal{A}}\left(\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)\cdot f\right).$$

A judicious use of the conditional Cauchy-Schwarz inequality and the comments about supports made previously shows that $E_{\mu}^{A}\left(\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)\cdot f\right)$ = 0 a.e. off support $E_{\mu}^{A}\frac{d\nu}{d\mu}$. Thus $E_{\nu}^{A}\left(E_{\nu}^{A}f\right)=E_{\nu}^{A}f$. This property of idempotency appears in Douglas' use of weighted conditional expectation operators in [1].

(2) Each $E_{\nu}^{\mathcal{A}}$ which is bounded on $L^{2}(X, \mathcal{F}, \mu)$ is in $(\mathcal{L}^{\infty}(\mathcal{A}))'$. The remaining task in this work is to show that there are sufficiently many such $E_{\nu}^{\mathcal{A}}$ to generate $(\mathcal{L}^{\infty}(\mathcal{A}))'$.

LEMMA 4. The linear span of $\left\{\Lambda\left(\frac{d\nu}{d\mu}\right): \nu \in \mathcal{E}\left(\mu\right) \text{ and } \Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}\right\}$ is dense in $L^{2}\left(X,\mathcal{F},\mu\right)$.

Proof. Suppose that $\left\langle g, \Lambda\left(\frac{d\nu}{d\mu}\right) \right\rangle = 0$ for every $\Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}$. Let u be a bounded positive function which is invertible in $L^{\infty}\left(\mathcal{F}\right)$, and define the measure $\nu \in \mathcal{E}\left(\mu\right)$ by $d\nu = ud\mu$. The functions u and $E^{\mathcal{A}}_{\mu}u$ are invertible elements of $L^{\infty}\left(\mathcal{F}\right)$ and $L^{\infty}\left(\mathcal{A}\right)$, respectively, so that

$$\Lambda\left(u\right) = \frac{u}{E_{u}^{\mathcal{A}}u} \in L^{\infty}\left(\mathcal{F}\right) \subset \mathbb{L};$$

hence $\langle g, \Lambda(u) \rangle = 0$. Let $A \in \mathcal{A}$ with $\mu(\mathcal{A}) > 0$. Then

$$\chi_A \cdot \Lambda \left(u
ight) = rac{u}{E_\mu^{\mathcal{A}} u} \chi_A = rac{u \cdot \chi_A}{\left(E_\mu^{\mathcal{A}} u
ight) \cdot \chi_A} = rac{u \cdot \chi_A}{\left(E_\mu^{\mathcal{A}} u \cdot \chi_A
ight)} \in \mathbb{L},$$

hence $\langle g, \chi_A \cdot \Lambda(u) \rangle = 0$; i.e.,

$$\begin{array}{lcl} 0 & = & \int_{X} \chi_{A} \cdot \Lambda \left(u \right) \cdot g d\mu = \int_{A} \Lambda \left(u \right) \cdot g d\mu \\ \\ & = & \int_{A} E_{\mu}^{A} \left(\Lambda \left(u \right) \cdot g \right) d\mu. \end{array}$$

But A was chosen arbitrarily in \mathcal{A} , and $E_{\mu}^{\mathcal{A}}(\Lambda(u) \cdot g)$ is \mathcal{A} -measurable. Therefore $E_{\mu}^{\mathcal{A}}(\Lambda(u) \cdot g) = 0$ a.e. But then

$$0 = E_{\mu}^{\mathcal{A}}(\Lambda(u) \cdot g) = E_{\mu}^{\mathcal{A}}\left(\frac{u}{E_{\mu}^{\mathcal{A}}u} \cdot g\right) = \frac{E_{\mu}^{\mathcal{A}}(u \cdot g)}{E_{\mu}^{\mathcal{A}}u}.$$

Since $E_{\mu}^{\mathcal{A}}u \neq 0$ a.e., we see that $E_{\mu}^{\mathcal{A}}(u \cdot g) = 0$ a.e., and (by integrating 0) we have $\langle g, u \rangle = 0$. Since the linear span of the positive, invertible elements of L^{∞} is dense in L^2 , we must conclude that g = 0.

Theorem 5. Let $S = \left\{ E_{\nu}^{\mathcal{A}} : \nu \in \varepsilon \left(\mu \right) \text{ and } \Lambda \left(\frac{d\nu}{d\mu} \right) \in \mathbb{L} \right\}$. Then S generates $(\mathcal{L}^{\infty}(\mathcal{A}))'$.

Proof. Via the von Neumann double commutant theorem, it suffices to show that if T is a bounded operator for which T and T^* commute with \mathcal{S} , then $T \in \mathcal{L}^{\infty}(\mathcal{A})'$. Let T be such an operator. For $\nu \in \varepsilon(\mu)$ and $\Lambda\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}$, and $f \in L^2(\mathcal{F}, \mu)$,

$$T\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\cdot E_{\mu}^{\mathcal{A}}f\right) = TE_{\nu}^{\mathcal{A}*}f$$

= $E_{\nu}^{\mathcal{A}*}Tf = \Lambda\left(\frac{d\nu}{d\mu}\right)\cdot E_{\mu}^{\mathcal{A}}Tf.$

Let $t=E^{\mathcal{A}}_{\mu}(T1)\in L^{2}(\mathcal{A},\mu)$. Then (with f=1 in the displayed equation above) $T\left(\Lambda\left(\frac{d\nu}{d\mu}\right)\right)=t\cdot\Lambda\left(\frac{d\nu}{d\mu}\right)$. Now the linear transformation L_{t} is closed, and, by Lemma 4, agrees with the bounded operator T on a dense set. Thus L_{t} is in fact equal to T, and necessarily $t\in L^{\infty}(\mathcal{A})$.

References

- R. G. Douglas, Contractive projections on an L₁-space, Pacific J. Math. 15 (1965), 443-462.
- [2] A. Lambert, localising sets for sigma-algebras and related point transformations, Proceedings of the Royal Soc. of Edinburgh, 118A (1991), 111-118.
- [3] ______, A Hilbert C*-module view of some spaces of operators related to probabilistic conditional expectation, to appear in Quaestiones Mathematicae.
- [4] A. Lambert and B. M. Weinstock, Descriptions of conditional expectations induced by non-measure preserving transformations, Proceedings of the American Math. Soc. 123 (1995), no. 3, 897-903.

Department of Mathematics University of North Carolina at Charlotte Charlotte, NC 28223 USA

E-mail: allamber@email.uncc.edu