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NORMAL QUINTIC ENRIQUES SURFACES
Yonceu Kim

ABSTRACT. In this paper we describe normal quintic surfaces in P?
which are birationally isomorphic to Enriques surfaces. Especially
we characterize the sublinear systems which give rise to one of two
Stagnaro’s normal quintic surfaces in P3.

1. Introduction

1.1. Let S be an Enriques surface over the complex number field C,
that is, a non-singular projective surface with H'(S, Os) = H*(S,0s) =
0, Ks 75 0 and 2K5 = 0.

This paper is concerned with the problem of describing normal quintic
surfaces in P? which are birationally isomorphic to Enriques surfaces.
E. Stagnaro constructed two families of normal quintic surfaces in P? as
special birational models of Enriques surfaces employing classical meth-
ods [8]. Projective models of an Enriques surface by complete linear sys-
tems have even degrees. Since Stagnaro’s models are quintic surfaces, it
is likely that they are birational projective models by certain sublinear
systems of complete linear systems, which may have base points.

The motivation for this work is to characterize the sublinear systems
which give rise to Stagnaro’s normal quintic surfaces in P3. We consider
one of his two models, say a Stagnaro’s first birational model of Enriques
surfaces or simply a Stagnaro’s first model, and reproduce his proof using
cohomologies (Theorem 2.1). We characterize this model by a special
type of divisors as follows (Proposition 3.3, Theorem 3.4):
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MaAIN THEOREM. Let S be an Enriques surface. Then the following
statements are equivalent:

1. S is birationally isomorphic to a normal quintic surface Fy in P3
which has two tacnodes and two triple points in general position,
where each of two tacnodal planes to Fs5 at two tacnodes passes
through two triple points (For the definition of tacnodes and triple
points, see Definition 1.5).

2. S has a divisor D = e, + ez + e3 + e4, where e;,--- ,e3 are half-
pencils of S with e; - e; = 1 for i # j and eq = e, = eg + K, the
adjoint of e;. Furthermore if py, -+ - ,ps are the intersection points

ofey,--- ,eq, then py,--- , ps are distinct (cf. Figure 1).

If an Enriques surface S has a divisor D of the type given at (2), then
we show that the sublinear system of |D + K| which has p;,--- ,ps as
its base points induces a birational morphism to a normal quintic surface
Fy in P?® with singularities described at (1) (Theorem 3.4).

E. Stagnaro noticed that the normal quintic surface described at the
above theorem is originally due to G. Castelnuovo [1]. G. Castelnuovo
found that the birational quadratic transformation z; : 25 : 23 : T4 =
YaYs : Y1Ye  N1Ys : Yiys maps a classic Enriques sextic to the above
normal quintic surface.

F. Cossec proved that every Enriques surface S has three half-pencils
e1,e2,e3 with e; - e; = 1 for ¢ # j, [3]. By applying this result, we
note that every Enriques surface S has a divisor D = e, + e + e3 + ey,

where ey, ,e3 are half-pencils satisfying e; - e; = 1 for ¢ # j and
- eq = €b. If for every Enriques surface S, the five intersection points
p1,--- ,ps of e, - - - , eq are distinct, then every Enriques surface S would

be birationally isomorphic to a normal quintic surface in P3. The author
once claimed that they are distinct, but later a gap in its proof was found
by Y. Umezu. It is obvious that e, and e4 both can not pass through
the intersection point of e; and ez since e; - e4 = 0.

Let C = e; + es + e3, where e;,e; and ez are half-pencils on an
Enriques surface S with e; - e; = 1 for ¢ # j. The linear system |C} on
S is said to be superelliptic if e; + e; — e3 is effective. We show that if
both of linear systems |C| and |C + K| are not superelliptic, then the
Enriques surface S has a divisor D of the type described at the above
theorem, which implies that S is birationally isomorphic to a normal
quintic surface in P (Proposition 3.5). On the other hand, F. Cossec
showed that |C| and |C + K| are not simultaneously superelliptic [3].
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Y. Umezu also independently obtained the above results for the Stag-
naro’s first model. Furthermore she shows that if d(S) > 4, then S has
a divisor D = e; + e; + €3 + €, with the distinct intersection points
Py, ps (9], [10], where d(S) = max {r : S has half-pencils e, - , e,
such that e; - e; = 1 for 1 < 4,5 < r}, called the non-degeneracy in- .
variant of S. Thus an Enriques surface S with d(S) > 4 is birationally
isomorphic to a normal quintic surface of the Stagnaro’s first kind. On
the other hand, it is known that d(S) > 3 for all Enriques surfaces S
(3], {4], but there is no known Enriques surface S with d(S) = 3. In the
last section, we also give the similar characterization for the Stagnaro’s
second model

“This is a part of the author’s Ph.D. thesis written at the University
of Michigan under the direction of Professor Igor V. Dolgachev. The
author would like to thank him for his numerous valuable remarks.

1.2.  We will always understand an elliptic curve to be an effective
divisor of arithmetic genus one. By an elliptic fibration of a surface X
over an algebraic curve B, we mean a proper morphism with connected
fibres f : X — B such that a general fibre X, (b € B) is a non-singular
elliptic curve. We call the elliptic fibration f (relatively) minimal if fibres
of f do not contain exceptional curves of the first kind. Unless otherwise
stated we assume that the elliptic fibration f is always minimal.

Every Enriques surface S admits an elliptic fibration over P'. Fur-
thermore, every elliptic fibration f : § — P! has exactly two multiple
fibres 2e and 2¢/, and Kg = Og(e' — €) = Os(e — €’). Each of the linear
systems |e|, |¢/| contains a single curve. For this reason, e and ¢’ are called
isolated elliptic curves or half-pencils. It is also known that isolated el-
liptic curves e and €' are of type I, in Kodaira’s notation (0 < n < 9)

(2], {4].

LEMMA 1.1 (Dolgachev [5]). If X is a minimal elliptic surface with
g(X) =0, then the plurigenus of X are given by

k
(L1) Pu(X) = h°(X,nKx) = n(py(X) = 1) + Y _ [n(m; — 1)/mi] +1,

i=1

where the integer m; are multiplicity of multiple fibers of an elliptic
fibration of X and [z] denotes an integral part of x. Furthermore if
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Pg(X) =0, Po(X) =1and Ps(X) =0, thenk =2, m =my=2. In
particular, X is an Enriques surface.

Proof. Let f : X — B be an elliptic fibration of X over an algebraic
curve B. We note that B = P! since ¢(X) = 0. In particular, all fibres
of the elliptic fibration f : X — P! are linearly equivalent. Let F be
a general fibre of f and X; = m;F; (i = 1,--- , k) the multiple fibres of
f with multiplicity m;. From the canonical bundle formula for elliptic
fibrations, it follows that

k
Kx ~(p(X) = 1)F+ 3 (mi — 1) .

=1

Thus we have

k
nKy ~n(pg(X)—1)F+Zn(m,~—1)F

k k
=(n (py(X) — 1) + Z [n (m; — 1)/my)) F + Za,- F,

where 0 < a@; < m;. Note that the divisor Ele a; F; is the fixed part of
the linear system |nKx|. Hence we get the desired plurigenus formula.

Now we assume that p,(X) = 0, P»(X) = 1 and P3(X) = 0. Then
from the formula (1),

k

0 =p5(X) = 3 [(ms — 1)/m]

i=1

1=Py(X —-1+Z[2 i—1) /mz]

0=P(X)= -2+ Z (8 (mi — 1)/mj]

We notice that k = 2.and m; = my = 2 is the unique integral solution of
the above system of equations. Therefore X is an Enriques surface. [

1.3. Let # : M — V be the minimal resolution of a Stein normal
surface V' with a unique isolated singular point p. Then the geomet-
ric genus h(p) of V at p is the dimension of the complex vector space
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H®(V, R'n.(Ou)). We state the following well known lemma without
proof.

LEMMA 1.2. Ifasurface F in P® has finite number of isolated singular
points and F its minimal desingularization, then x(Of) = x((’)p) +
PR sing M(P). In particular, if F is a normal quintic surface in P®, then

(OF) + Y hp).

p sing

COROLLARY 1.3. If a normal quintic surface F in P3 is birationally
isomorphic to an Enriques surface S, then

k

(1.2) D hip) =4

i=1

where p; (i = 1,--- , k) are the isolated singular points of F with h(p;) >
0.

REMARK 1.4. The identity (2) is the necessary condition for a normal
quintic surface F in P3? to be birationally isomorphic to an Enriques
surface S. Hence it could be used as a criterion for the classification
of normal quintic Enriques surfaces in P3. We have the following four
possibilities:

1. k=1 and h(p) = 4.

2. k=2 and h(p)) = 2,h(p2) =2 or h(p;) = 1, h(p;) = 3

3. k=3 and h(p,) =1, h(ps) = 1, h(ps) = 2.

4. k=4and h(p;) =1,i=1,--- 4.

DeFINITION 1.5. Let p be an isolated singularity on a hypersurface
V with a minimal resolution of V, 7 : M — V. Then p is minimally
elliptic if h(p) = 1. And tacnodes (triple points) are minimally elliptic
double points with Z? = —2 (minimally elliptic triple points), where Z
is the fundamental cycle on the exceptional set 7~(p), [7].

Throughout this paper, we will say simply tacnodes or triple points of
type I ignoring self-intersection numbers of irreducible components of T,
the dual graph of the singularity. Most of tacnodes we will treat in this
paper are tacnodes of type I,,, 0 < n < 9. In particular, tacnodes and
triple points of type Iy are simple elliptic singularities, whose exceptional
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sets are non-singular elliptic curves. Their equations are given by

Toua @ 22 +2* +y* +azy?,a* #4 and
Ta33 : xs+y3+z3+axyz, a3+27¢0.

In general, the equation of tacnodes is given by
22+ f(z,y) =0,

where f(z,y) is a polynomial in z,y whose smallest total degree among
non-zero monomial terms is four or five (see Table 2 in [7]). Then a
tacnodal plane is the plane given by the equation z = 0 in the above
equation.

DEFINITION 1.6. Let (S, p) be a normal complex surface singularity
and 7 : (S, A) = (S,p) be the minimal resolution of (S,p). Then (S, p)
is a cusp singularity if and only if the exceptional set A = UA; is an
irreducible rational curve with a node or a cycle of nonsingular rational
curves A;. Furthermore if (S,p) is a hypersurface singularity, then its
defining equation is given by T, ., : 2P + y? + 2" = zyz, where 1/p +
1/¢+1/r <1

2. Stagnaro’s first birational model of Enriques surfaces

2.1. In this section, we reproduce one of the two families of normal
quintic surfaces which were given by E. Stagnaro as birational models of
Enriques surfaces.

THEOREM 2.1 (Stagnaro (8]). Let F5 be a normal quintic surface in
P2 with the following property P:

The normal quintic surface F5 has two tacnodes at As, Ay
and two triple points at Ay, Az, where A, Ay, Az, Ay are
the vertices of a tetrahedron T. Two tacnodal planes to
F5, o at A; and ay at A4, pass through two triple points
A; and Az. Any other singular points of Fy are rational
double points.

If S is a minimal non-singular model of F;, then S is an Enriques
surface.
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Proof. Let S be the minimal desingularization of the surface F5. We
compute the surface invariants p,, ¢, P, and P; of S. At the end of the
_ proof, we show that p,(S) = 0, ¢(S) = 0, P»(5) = 1 and P(S) = 0.
After observing that »(S) = 0, we conclude that from the classification
of surfaces with s = 0, the minimal model S of § is an Enriques surface.

To get a minimal non-singular model of Fy, we first resolve the singu-
larities of F5 in an affine neighborhood V' of one of two tacnodal singular
points Ay and A4. Let us take one of them, say A;. By choosing a small
enough neighborhood of the point A;, we may assume that V has the
only singular point A, and is a hypersurface in A3. The surface V may
be considered as the surface defined by the equation : 2% + f(z,y) = 0,
where f(z,y) is a polynomial in z,y whose the first non-zero monomial
term is of total degree 4 or 5 and A, corresponds to the origin. Let
Hy be the hyperplane of A3 given by the equation: z = 0, which is the
tacnodal plane to V' at the origin.

Let g1 : M — A3 be the blow-up of A® at the origin, V' the proper
transform of V' and E’ the exceptional divisor. Then V' meets E’ along
a double line L, and Hy N E’' = L, where H} is the proper transform of
the tacnodal plane Hy in M.

Next we blow up M along a line L, and let o0 : N — M be the
blow-up of M along a double line L of V', V the proper transform of V'
and E ~ P! x P! the exceptional divisor.

V ¢ N > E
|- |
Vi ¢ M D E' > L

-

V ¢ A® 3> 0=(0,0,0)

The surface V may have rational double points which do not change
the surface invariants, hence we may assume that V is non-singular. Let
0= 0y00,.

The following two lemmas are essential in understanding the reason
why we have to impose a special condition on two tacnodal planes a;
and o3 at 2.1. Tt is a fairly easy exercise to prove the following lemmas
from the above two blow-ups computation, s0 we omit their proofs.
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LEMMA 2.2. Any hypersurface Hy of A3 which is tangent to the tac-
nodal plane at the origin is the unique hypersurface of A3, including the
tacnodal plane Hy, for which the total transform is given by

O'*(Hl) = 0'2* o 0'1*(H1)
= 0'2*(Hi + E’)
= 02*(H]) + 02*(E")
=H +E+o0*(E);
and for all other hypersurfaces H, of A3 passing through the origin as a
smooth point,
U*(Hz) = H2 + 0'2*(E,) s
where H is the proper transform of H; in M and H, and H, are the
proper transforms of Hy, H, in N.

Abusing notations, let H; and H, be divisors on V cut out by hyper-
surfaces H; and H, of Aj."

LEMMA 2.3. Lete C V be the exceptional set of the minimal desin-
gularizationo : V — V. Then o*(H,) = H, + 2¢ and o*(H,) = H, + é.

Next we examine two triple points A; and Az. To resolve singularities
at these two points, we need to blow up points alone because triple points
in our definition are absolutely isolated, which can be resolved by blowing
up points alone.

We now return to the normal quintic surface F5. After blowing up Fj

at infinitely near points or infinitely near double lines over A, .-, Ay,
we may assume that we resolved singularities of Fs.

Let 0 : S — F5 be the minimal desingularization and é;,--- , €&, the
exceptional sets over Ay,---, As. Then it is easy to check that
(2.1) Ks;=0"(H) - & —é —é; — €4,

where H is a hyperplane section of Fs.
The adjunction formula implies that

Kg'éi+éi'éiZ—éi'éi+éi‘éi:0, 1 S’LS4
Thus we see that the exceptional sets é;, - - - , &4 are elliptic curves on S,
and note that é2 = é2 = —3 and &% = €2 = —2.

If there is any effective divisor in |K3| = PH®(S, O(K3)), it would
correspond to a hyperplane of P3 passing through Ay, -- -, A4. However,
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this is clearly impossible since four points A,,---, A4 are in general
position in P3, and thus p,(S) = 0.
From the formula (3), we have

2K§,= 0'*(2H) - 2é1 - 2é2 - 253 - 254 .

This formula and Lemma 2.3 shows that bicanonical divisors of S
correspond to quadrics in P3 whose total transforms under the map
o : S — F5 contain 28, + 26, + 23 + 2é,. Hence the quadrics in P?
either:
1. have four double points at vertices of the tetrahedron which are
the only non-rational singular points of the normal quintic surface -
Fy5 or :

2. are the singular quadric a; + a3, the union of two tangent planes
&y, Q.

Let @ be a quadric in P2 satisfying the first condition. We note that
the quadric () must contain four planes coming from planes through
three out of four vertices of the tetrahedron, which is not true. Hence
our conclusion is that there is no quadric in P? satisfying the first case.

The second case corresponds to the quadrics which are not singular
at two tacnodes of F5. It is the unique effective divisor of |2K3| =
PH%(S,0(2K3)). Hence Py(5) = 1.

Next we consider the formula

3K = 0" (3H) — 36, — 36, — 36, — 3¢,.

Tricanonical divisors of S correspond to cubic surfaces in P3 which
either:

1. have four triple points at vertices of the tetrahedron or
2. are the union of two tacnodal planes and a plane through the four
vertices of the tetrahadron.

Similarly to the calculation of the bicanonical genus, it is easy to
show that cubics with the first case must contain four planes coming
from planes through each three out of four vertices of the tetrahedron,
which is impossible. The second case corresponds to the cubics which do
not have triple points, but double points at two tacnodes of F5. Cubics
with the second case do not exist since there is no plane through the four
vertices of the tetrahedron. Hence our conclusion is that P3(S) = 0.

Since tacnodal points A,, A4 and triple points A;, A3 are defined to
be minimally elliptic double points and triple points respectively, their
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geometric genera, h; = h(A4;) =1 (i=1,---,4). Then from Lemma 1.2,
we have
4
5=x(Fs) =x($) + ) _hi
i=1
=1-q(S) +py(5) +4.

From this equation, we see that ¢(S) = p,(S) = 0.

Summarizing, we have shown that the minimal non-singular model
S of the normal quintic surface F5 with the property P has the surface
invariants: p,(S) =0, P»(S) = 1, P5(S) = 0 and ¢(S) = 0.

By the Riemann-Roch formula,

1 = P2(S) 21 — q(S) +pg(S) + ((2K5)2 — 2K5 . Ks)/2
=1+ K32,

from which we induce that K2 < 0.

One can easily check that K% ¢ 0. Thus K% = 0, and #(S) =
0 or 1. Suppose that »(S) = 1, which implies that S is a properly elliptic
surface. Then from Lemma 1.1, S is an Enriques surface, therefore
#(S) = 0, a contradiction to our assumption. Hence 3¢(S) = 0. From
the classification of surfaces with » = 0, we now come to a conclusion
that the surface S is an Enriques surface. (]

COROLLARY 2.4. Let X be a minimal non-singular model of a normal
quintic surface Fy which has two tacnodes and two triple points in general
position, and does not satisfy the property P. Then X is a rational
surface.

Proof. Similarly to the proof of Theorem 2.1, it is easy to see that
pe(X) =0, g(X) = 0 and P»(X) = 0, which implies that (Kx)* < —1.
Hence 3(X) = —o0, and so X is a rational surface. a

2.2. We now fix four points of a tetrahedron T, say A; = (1,0,0,0),
Ay = (0,0,1,0), As = (0,1,0,0), Ay = (0,0,0,1). Suppose that the
equations of two tacnodal planes to Fs at A, and A, are given as follows:

op i 4 =0and ag : z3=0.

PROPOSITION 2.5. Let Fy be a normal quintic surface in P3 satisfying
the property P of Theorem 2.1. Then Fy contains five lines Ly, --- , Ls,



Normal quintic Enriques surfaces 555

where
Li=A1As , Ly = A1Ay, Ly = AjAy , Ly = A3Ay , Ls = AyAs.

The tacnodal plane oy cuts out the quintic surface Fs a hyperplane
section' Ly + 2Ly + 2Ls. Similarly, the tacnodal plane oy cuts out the
quintic surface Fs a hyperplane section Ly + 2L3 + 2L4. Furthermore,
the normal quintic surface Fy has a defining equation :

Fs : a12322 + ag732}

3T E2Ts + AT TETy + A5TITIT, + A6TH3T,
72,2202 + agziadng + agriTar] + 01022757
+a11xfx2m3x4 + (11211}122%1'3.'114

‘*‘(113.’1311}2.’1}%1'4 -+ a14$1$2$3$i,

where a;, - - ,a¢ and ag, a9 are non-zero.

Proof. The first part is easy to check. To get the equation of the quin-
tic surface F, which was originally given by Stagnaro [8], first consider
all monomials of degree 5. Next we discard those monomials which do
not satisfy the conditions on F5. Then the remaining monomials are the
ones appearing at the above equation (see [6]). O

We note that the equation of F5 has fourteen coefficients with the
action by the torus group, hence ten parameters correspond to the space
of Enriques surfaces obtained from normal quintic surfaces Fs with the
property P. Since the dimension of the moduli space of Enriques surfaces
is ten, one infers that generic Enriques surfaces could be obtained from
normal quintic surfaces in P3 with the property P.

3. Characterization of Stagnaro’s first model

3.1. In this section we will investigate Enriques surfaces obtained
from normal quintic surfaces in P? with the property P.

Let o : S — F be the minimal desingularization of Fs. Let fq, SN Ls
be the proper transforms of lines Ly, --- , Ly of F5 which was described
at Proposition 2.5 and é&;,--- , €, the exceptional sets over Ay, .-, As.

Then Kz = o*(H) — & — &, — & — &, where H is a hyperplane section
of F5. It is easy to check that o*(H) Li=1L &= Ly-é3 =1,
and Ly - & = L, - &, = 0. Hence Kz L, = —1, which implies that
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I[?=2g(l1)—2—- Kz L = -1, so L is an exceptional curve of the
first kind. Similarly we see that Lo, - - - , L5 are exceptional curves of the
first kind.

Let 7 : S — S be the blow-down of L, --- , Ls. Then K% = 0 since
Kg = —5. Since we showed that a minimal non-singular model of Fj is
an Enriques surface and thus K2 = 0, we deduce that the surface S is a
minimal surface, that is, the surface S is free from exceptional curves of
the first kind.

Let E be a divisor on S corresponding to o*(H). The goal of this
section is to characterize the divisor E.

Before going further, we present a lemma which also shows the above
claim that the surface S obtained from S after blowing down I:l, P
is a minimal surface. This lemma gives us a formula which could be used
as a criterion on Enriques surfaces which are birationally isomorphic to
a normal quintic surface in P3.

As before let o : S — Fy be a minimal desingularization of Fj,
and o*(H) the total transform of a hyperplane section H of F5. Let
Ly,---,L,, L},---, L] be all exceptional curves of the first kind on S
which are blown down to regular points of S, and 7 : S — S the corre-
sponding blow-down, where

o*(H)-Li=m; >0 fori=1,---,n
o*(H)-L; =0 forj=1,---,1.

LemMa 3.1. Let Kz = 7(Ks)+ Y1, e:Li+Y 5, d;L}, where c; and
d; are positive integers. Then Y i, ¢;m; = 5.

Proof. We observe that o*(H)? = 5, and the arithmetic genus of
0*(H), po(c*(H)) = 6 since o*(H) is the total transform of a hyperplane

section of the normal quintic surface F5 C P3. Then by the adjunction
formula, we have

10 =2 po(0™(H)) — 2
=0"(H)-c*(H)+ Kg-0"(H)

i=1

Thus Y 1, ¢; m; = 5, and completes the proof. O

REMARK 3.2. Lemma 3.1 is originally due to A. Verra [11] without
the constants ¢;. The equation Z?zl ¢;m; = 5 could be used when we
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FIGURE 1

check whether an Enriques surface S with a divisor E is birationally
isomorphic to a normal quintic surface F' in P® while E is correspond-
ing to o*(H), and this will be tested at Theorem 3.4. This remark is
comparable to Remark 1.4 which describes the necessary condition for
a normal quintic surface F' in P*® to be birationally isomorphic to an
Enriques surface S.

Now by setting ¢; = 1,m; =1 (i = 1,---,5) and applying Lemma
3.1, we confirm that L; (i = 1,---,5) are the only exceptional curves
of the first kind which intersect o*(H). Hence after blowing down the
exceptional curves of the first kind L; (i = 1,---,5), we get the same
divisor E.

Let e, ,eq be the images of elliptic curves &,,--- ,&, by the map
7: 5 — S. Then we see that e;-e4 = 0, and ¢;-¢; = 1,1 5 j except ¢ = 2,
j = 4. Consider an invertible sheaf Og(e;), i = 1,---,4. If the linear
system |Og(e;)| has no fixed components for some ¢, then [2], Theorem
1.5.1 says that Og(e;) =~ Og(k P) for an elliptic pencil |P|, where k > 1.
Then we would not have the equality, ¢;-e; = 1,7 # jexcept i =2,j =4
" because P = 2 ¢ for some isolated elliptic curve e and e; - e; would be an
even number. It follows that [Os(e;)] has a fixed component for each 4,
1 <i < 4. Thus we conclude that each elliptic curve ¢;, 1 <1 < 4, is an
isolated elliptic curve, which is an indecomposable divisor of canonical
type (for the definition, see {2], [4].

We defined F as the image of 0*(H) by the map 7. Then E = D+ Kg,
where D = ey +e5 + €3 + €4 is a divisor with the configuration in Figure
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1, and e;,---,eq are isolated elliptic curves on S. We note that e; =
e, = ey + K since ey, e4 are the isolated elliptic curves and e, - ¢, = 0.

We recall that the points py,---,ps of S are the contractions of
Li,---, Ls, and the isolated elliptic curves ey,---,eq on S are from
the points A,,---, Ay of a normal quintic surface Fs, hence especially
five points p, - - - , ps are mutually distinct.

By summarizing what we have observed, we get the following propo-
sition.

PROPOSITION 3.3. Let S be an Enriques surface obtained from the
normal quintic surface Fy satisfying the property P of Theorem 2.1,
then S has a divisor D = e, + ey + e3 + eq with the configuration in
the Figure 1, where ey, - - ,e4 are isolated elliptic curves on S, and the
intersection points py,- - ,ps are distinct.

3.2. We will now show that an Enriques surface S with a divisor D
with the configuration in Figure 1 is birationally isomorphic to a normal
quintic surface Fj satisfying the property P of Theorem 2.1. Thus En-
riques surfaces with such a divisor D are exactly those Enriques surfaces
which are minimal non-singular models of normal quintic surfaces in P3
with the property P. In particular, the type of divisors D with the con-
figuration in Figure 1 gives a criterion for determining which Enriques
surfaces might be birationally isomorphic to normal quintic surfaces in
P3.

THEOREM 3.4. Let S be an Enriques surface with a divisor D =
e1 + ey + e3 + e4 with the configuration in Figure 1, where py,--- ,ps5
are distinct points. Then S is birationally isomorphic to a normal quin-
tic surface Fy satisfying the property P of Theorem 2.1 with possibly
finitely many rational double points. In particular, two triple points and
two tacnodes are cusp singularities

_ Proof. Let ¢ : S — S be the blow-up of S at py,---,ps. Let
Ly,---,Ls be the exceptional divisors of the first kind and €;,---, ¢4
the proper transforms of e;,-- - ,e4 by the map ¢. Then we set
D=¢"(Ks)+é& +é +é+é+ L1+ Ly+Ls+Ly+ Ls
:¢*(KS+€1+€2+€3+64)—L1 —LQ—Lg—L4——L5.
Let £ be the sublinear system of |D + K| which consists of divisors
of |D+ K| with base points py, - -+ , ps. Then the sublinear system £ on
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S may be identified with the complete linear system |D| on 5. We note
that Ly,-- L5 are the only exceptlonal divisors of the first kind on S
satlsfylngD Li=1fori=1,---,5and Kz = ¢*( Ks)+2,_1L If we
set 0*(H) to be D at Lemma 3.1, then 3" ¢;m; = 5 because ¢; = 1
and m; = 1for<=1,.--,5. Hence we could expect that the divisor D
may induce a morphlsm from S to a surface in P3.
The sublinear system £ has the following four generators:
D, = 61I+62+63+64
D2 = €1+€21+63+€4
D, =61+62+83,+64
D4 =€ +62+€3+64l,
where e;' = ¢; + K.
Thus we could expect that dim|D| = 3. Indeed, it is easy to compute
the cohomology H® (S O;(D) ) as follows.

Since D = Kg+eé +é+é3+€,y, we get Kg— D=-¢ —82‘—63—64
Now we compute the cohomologies H' (S, 03(D)) and H?(S, 05(D)):
H*(8,05(D)) = H'(S, 05(K; - D))
= H'(S,05(~& ~ & — & — &))
= H%(S,04(-D)) =0
Hl(s'?OS‘([))) = Hl(‘g’ 0§'(K5' - D))
= H1(5~', Os(~&1— &~ é - €1))
- = H'(S,05(-D)),
where D = &, + &5 + &3 + €,.
To compute the cohomology H! (S Os(~- D)) consider the exact se-
quence
0 — Oz(—D) — O5 — Op — 0.
Taking cohomology, we get the long exact sequence
0 —s H°(S,05(-D)) —H(S,05) — H*(D, 03)
—HY(S,04(~D)) — H'(S,05) — .
Since H'(S, 05) = H'(S,0s) = 0, from the above exact sequence of
cohomologies,
h'(8,05(=D)) = h*(S, 05(~D)) - (8, 03) + (D, 0p)
=0-1+4=3,
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where h°(D, O) = 4 because D is composed of four mutually disjoint el-

liptic curves (i.e. degenerate elliptic fibres of type I,) &, - , €4 and Ra-

manujam’s Lemma (Lemma 1.2.4, [2]), which says that H*(D,Op) = C

for numerically 1-connected effective divisor D. We note that degenerate

elliptic fibres I,, are numerically 1-connected. ‘
Hence

h! (5', (’)g(D)) = h! (g, Og(—D)) =3.
By applying Riemann-Roch formula,
D*-D-K;

K (3,05(D)) = h*($, 05(D)) — 1*(8,05(D)) + —— (03)
:3—0+i%§+ﬂ09
=3+1=4

Therefore dim|D| = 3.
If ¥ = 9¥|p is the map induced by the complete linear system |D|
then the map ¢ maps S into P3, that is,

Y:5 = FCP?

where F is a surface in P3. Since (D+ K 5)2 = 16 and the linear system
|D| can be identified with the sublinear system £ of |D+ K5/, the above
map v : S — F corresponds to the projection

m:ScP?— FcP?

which is induced by the sublinear system L. Next we prove that the
map 7 is well defined. To do so, we have to show that the linear system
|D| is without fixed components and base-points-free.

From the above generators of £, we see that the linear system |D|
does not have fixed components Furthermore, the linear system IDl is
base-point-free since p;, - - - , ps are the only common points of ;, - - , e4.
Then, the map induced by the complete linear system IDI P = 1/)| bt
S — F C P? is well defined, and is of degree one since D? = 5. So the
surface F is a quintic surface in P3. Let us set F = F;.

Next we claim that the quintic surface Fs is normal, that is, F5 has
only isolated singularities. By the adjunction formula, p,(D) = (D-D+
D - Kg3)/2+ 1 = 6. Obviously, the geometric genus of generic curves
on S is invariant under the map % : S — Fy since it is generically
one-to-one. Thus the geometric genus of a generic hyperplane section
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of F5 is also 6 since by Bertini’s theorem, generic divisors of lf)l are
non-singular curves with the geometric genus 6. While the maximum
possible geometric genus of a hyperplane section of Fy is 6 since it is a
plane curve of degree five. Hence the quintic surface Fy would have to
have only isolated singularities, that is, Fs is a normal quintic surface in
P3

Since D& =0,i=1,---,4and D-L; = 1, 3_1 ., 5, the
map 9 maps elliptic curves &,---,é, to pomts Ay, -, Ay of Fs, and
Ly,---,Lstolines Ly,---, Ls of F5 The normal quintic surface Fs may
have finitely many rational double points. These rational double points
are contractions of the proper transforms of non-singular rational curves
Ron S with R? = —2 by the map ¢ : § — Fy. Let us show that Fj -
has no more singular points. Suppose that C is a curve on S other than
€1, -, €4, which is mapped to a point by the map . Then the Hodge
index theorem implies that C? < 0. Since € - K s = 0, the adjunction
formula implies that x(Og) > 0. Hence the curve C is a non-singular
rational curve and C? = —2.

Since isolated elliptic curves ey, - - - , e4 are divisors of type I,, &, - - , &,
are exceptional sets over A;,---, Ay of the same type I,, 0 < n < 9.
In particular, the geometric genus of singular points A4;,- - , A4 can not
be zero. Then from the equation (2) of Corollary 1.3, we obtain that
h(A;) =1foralli =1,---,4. Thus singular points Ay, - - , A4 are min-
imally elliptic singular points of F5, which are also cusp singularities.
Obviously, the fundamental cycle on €; is e; itself for 1 < i < 4. Fur-

thermore, since & = &2 = ~2 and & = & = -3, A4, and A4, (A2 and Ay)
are triple points (tacnodal points) of type I, 0 < n < 9.” We also note
that since pg(S) 0, four points A;,-- -, A4 are in general position.

Now it remains to prove that the normal quintic surface Fy satisfies
the property P of Theorem 2.1. Let us set a divisor D; as follows:

Dy=Ly 420+ 205+ & + 26, + &
= ¢*(61 +2€2+63) —'Ll —LQ—L;; - L4 - L5.
Then D, € |D| since

61+262+63
~e;+ey+e3+e+ Kg+ Kg
N61+62+63+612+Ks
=e; + ey +e3 + €4 + K.
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It says that the divisor D; on S corresponds to a plane a; of P3 which
cuts the divisor L, + 2Ly + 2Ls out of the normal quintic surface Fs.
Hence it is the tacnodal plane to F;5 at A, which contains two triple
points A; and A;. Similarly there exists a tacnodal plane a; to Fj at
A4 containing two triple points A; and As. O

Let C = e; + e + e3, where ey, e;, e3 are half-pencils on an Enriques
surface S and e; - e; = 1 for ¢ # j. We said that the linear system |C|
on S is superelliptic if e; + e3 — e3 is effective. This means that |C| is
superelliptic if there are half-pencils e;, e2,e3 on S with e; - e; = 1 for
i # j such that C ~ e; +e3+e3 and e; + e3 — e3 is effective. Particularly
the effectiveness condition on e; + e; — e3 is independent of the order
of e), ez, e3, which means that the linear system |C| is superelliptic if
one of divisors e; + e — e3,e; + €3 — €9, €3 + €3 — € is effective. Hence
the linear system |C| is not superelliptic if any of divisors e; + e —
es,e; +e3 — e, ex + ez — e is not effective. The following proposition is
a revised version of the author’s lemma at his thesis after Professor Igor
Dolgachev’s remark.

ProPOSITION 3.5. If both |C| and |C + K| are not superelliptic
linear systems on S, then either e, or e4 of the divisor D does not pass
through the point p,, the intersection point of e; and ez, which implies
that the Enriques surface S is birationally isomorphic to a normal quintic
surface in P3 with the property P.

Proof. Contrary let us assume that e, passes through the point p;.
Then from the short exact sequence

0 — Os(e; — ez —e3) — Os(er — e2) — Ogy(er —e2) — 0,
we have a long exact sequence of cohomologies

0 — HO(S, 05(61 — €2 — 63)) — HO(S, 05(61 - 62)
— Ho(e3,(’)63(el —e)) — Hl(S, Os(ey — ey —e3)) — .

We note that H°(S, Os(e; — e2)) = 0, otherwise there is an effective
divisor E which is linear equivalent to e; —e,. Then e;-F = e;-(e;—e3) =
—1, which is impossible. Now H® (63, 063(61——62)) = C since (e;—€3)|e, is
a zero divisor on e3. This in turn implies that H°(S, Os(e; — €2 — €3)) =
0. Next we claim that H!(S,Os(e; — ez — e3)) = 0, which induces
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a contradiction to the exactness of the above long exact sequence at
H%(e3, Ocy(er ~ e2)). From Riemann-Roch formula,

ho (S, 03(61 - €9 — 63)) - hl (S, 03(61 — €9 — 63))
+h2(S, 05(61 — €9 — 63)) =1+ 1/2 (61 — €9 — 63)2 = 0.
~ Since hO(S, Os(e; — ey — 63)) =0,
hl (S, 05(61 — €9 — 63)) = hz(S, 05(61 — €3 — 63))
= hO(S, Os(KS + ey +e3— 61)) = (.

The last identity follows from the assumption that |C + K| is not a
superelliptic linear system on S. Similarly we conclude that e, does not
pass through the point p; from the assumption that |C| is not superellip-
tic. Theorem 3.4 then implies that the Enriques surface S is birationally
isomorphic to a normal quintic surface in P? with the property P. 0O

It is known that a generic Enriques surface S is birationally isomor-
phic to the classic Enriques sextic with the defining equation:

XoX1 X2 X3Q(X) + MXEXEXZ + M X2X2X?2
A XEXEXE + M X2X2X2 =0,

where Q(X) is a homogeneous polynomial of degree two and ); € C for
¢=1,---,4if S has a divisor C = e; +e3+e¢3 such that |C| and |C+ K|
both are not superelliptic, where €, ey, €3 are half-pencils with ¢; - e =1
fori # j [3]. This also follows from Proposition 3.5 since G. Castelnuovo
showed that a classic Enriques sextic is birationally isomorphic to the
Stagnaro’s first model.

Let D' =D+ Ks = e1+e; +e3 +eq + Ks ~ e, + 2ey + €3, where
es = €3. Then the divisor D’ on S induces a map 7p : S — S C P8,
where S is a non-normal surface of degree 10, [4]. S has two double lines
¢y, ¢ which are the images of e;, e4 by the map 7p. Thus the normal
quintic surface Fy with the property P is the projection of S from a very
special line £* of P°. If we set P® = |D'| = |D + Kg|, then the line ¢*
is the complement of the sublinear system £ of |D + Kg| in P®, which
was introduced at the proof of Theorem 3.4. The projection of S from
either the line £; or the line ¢, is the well known Enriques sextic model,
that is, a sextic surface with six edges of a tetrahedron as double lines
when |C| and |C + K| are not superelliptic for C = e, + e, + e3.
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e

4

FIGURE 2
4. Stagnaro’s second birational model of Enriques surfaces

We summarize similar results for Stagnaro’s second model without
proofs. Proofs are almost identical to the corresponding statements for
the first model, and the details are in [6].

THEOREM 4.1 (E. Stagnaro [8]). Let Fs be a normal quintic surface
in P3 with the following condition Q:

F; has four tacnodal points at the vertices Ay, Az, A3, Ay of
a tetrahedron T such that tacnodal planes to F5 at A1, A,
and As, A, are identical.

If S is a minimal non-singular model of Fy, then S is an Enriques surface.

As for the first model, we fix four points of a tetrahedron T, say
A; = (1,0,0,0), 4, = (0,0,1,0), A3 = (0,1,0,0), A; = (0,0,0,1).

PROPOSITION 4.2. Let Fs be the normal quintic surface in P® satis-
fying the property Q of Theorem 4.1. Then Fs contains three lines L,,
L} and L, ; the lines L, = A1 A; and L = A3A4 are lines joining two
vertices of the tetrahedron T and L, is the intersection of two tacnodal
planes oy and a,. Furthermore, the normal quintic surface Fs has the
following equation as its defining equation:
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F o (23 + z3) (21 + 13)?
+(z1 + 73) (@2 + 74)° |
+(a1712273 + 691 T924 + a3T1T374 + QaTa%3%4) (%1 + T3) (T2 + T4)
+asT3T5(T1 + T3) + ar302 (22 +74) = 0; a5 # 0, ag #0.

PROPOSITION 4.3! If S is the Enriques surface obtained from the
normal quintic surface Fs satisfying the condition @ of Theorem 4.1,
then S has a divisor D = e, + e; + e3 + e4 with the configuration in the
Figure 2, where ey, - - , e, are isolated elliptic curves.

THEOREM 4.4. Let S be an Enriques surface with a divisor D =
€1 + €3 + €3 + eq with the configuration in Figure 2, that is, e;, €5, 3, €4
are isolated elliptic curves and e;-e3 =e;-ey = ey €3 =€y-€4 = 1, and
€1 €y = €3 €4 = 2, where ey, ey and e3, e4 meet tangentially at a point
p.

Then the following statements are true:

1. If the adjoints e;’,es',e3’ and ey’ do not have a common point,
then S is birationally isomorphic to a normal quintic surface Fs5 in
P3 satisfying the property Q of Theorem 4.1 with possibly finitely
many rational double points, where four tacnodes are cusp singu-
larities.

2. If the adjoints e,’, ey’,e3’ and ey’ have a common point, then S is
birational to a surface which is mapped two to one onto a quadric
surface @ in P3.

References

[1] G. Castelnuovo, Sulle superficie di genere zero, Mem. delle Soc. Ital. delle Scienze
Ser. 111, 10 (1895), 103-123.

[2] F. Cossec, Projective models of Enriques Surfaces, Math. Ann. 265 (1983), 283~
334.

{3] ,» On the Picad Group of Enriques Surfaces, Math. Ann. 271 (1985),
577-600. L

[4] F. Cossec, I. Dolgachev, Enriques Surfaces I, Birkhauser, 1989.

[5] 1. Dolgachev, Algebraic Surfaces with q = py = 0, Proc. CIME Summer School
in Cortone, Napoli, Liguori editore, 1981, pp. 97-216.

(6] Y. Kim, On Normal Quintic Enriques Surfaces, Thesis, University of Michigan,
1991.

[7] H. B. Laufer, On Minimally Elliptic Sz‘nyularz'ties, Amer. J. Math. 99 (1977),
1257-1295. :




566 Yonggu Kim

[8] E. Stagnaro, Constructing Enriques Surfaces from Quintics in P3, Algebraic
Geometry-Open Problems, Lect. Notes in Math., vol. 997, Springer-Verlag, 1983,
pp. 400-403.

[9] Y. Umezu, Normal Quintic Surfaces which are birationally Enriques Surfaces,
Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, 359-384.

, On Birational Models of Enriques Surfaces in P3, Proc. of the Japan

Academy, 70, Ser. A (1994), no. 5, 137-139.
[11] A. Verra, Quintic Enriques Surfaces, personal notes.

(10]

Department of Mathematics Education
Chonnam National University

Kwangju 500-757, Korea

E-mail: kimm@chonnam.chonnam.ac.kr



