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CONVOLUTION OPERATORS WITH THE AFFINE
ARCLENGTH MEASURE ON PLANE CURVES

YouNgwoo CHOI

ABSTRACT. Let v : I — R? be a sufficiently smooth curve and
o, be the affine arclength measure supported on . In this paper,
we study the LP—improving properties of the convolution operators
T, associated with o, for various curves 7. Optimal resuits are
obtained for all finite type plane curves and homogeneous curves
(possibly blowing up at the origin). As an attempt to extend this
result to infinitely flat curves we give an example of a family of flat
curves whose affine arclength measure has the same LP-improvement
property. All of these results will be based on uniform estlmates of
damping oscillatory integrals.

1. Introduction
Let v : I — R? be a sufficiently smooth curve and let
1
_ UM
At) = |det [ Y(8)
The affine arclength measure 0., on v is given by

/ R? fdoy = /1 f (7(t)) M) dt

for f € C° (R?). Consider the convolution operator T, defined by

) T f@) = fro,@ = [ fo-20) A0 de.

Under certain circumstances T, is LP-improving in the sense that for
some p and ¢ with 1 < p < ¢ < 00, T;, is a bounded operator
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from L7 (R?) into L% (R?). Littman [6] proved that if v is a compact
nondegenerate plane curve (in which case the affine arclength measure
is essentially the same with the euclidean arclength measure) T, maps

L? (R?) boundedly into L3 (R%). Global version of this [1, 3] is also
available:

(1.2)
(/RIRCEESLY:

In this paper, we generalize Littman’s result to degenerate plane
curves. To mitigate the effect of the degeneracies, we will consider the
affine arclength measure rather than the euclidean arclength measure.

The use of the affine arclength measure in convolution operators was
suggested by Drury [2]. In many cases it turned out to be effective
in extending results for nondegenerate curves to those for degenerate
curves.

Mainly we will prove

(1.3) |, -fIIL3(R2) <C ”f“Lg(W)

when v is a compact plane curve of finite type. Global estimates like
(1.2) will be also obtained and certain examples of flat curves with the
same mapping properties will be given. As expected the results are
degeneracy-independent in all successful cases. The author would like
to thank Prof. Stephen Wainger and Prof. Andreas Seeger for their
guidance on this project during his stay at Department of Mathematics,
University of Wisconsin—-Madison as a graduate student.

1

3 3
d:rlda:2> < C ”f”L%(RZ)

2. Estimates of damping oscillatory integrals

The main purpose of this section is to provide a couple of estimates
for certain oscillatory integrals. The first one can be thought of as a
perturbed version of van der Corput’s lemma.

PROPOSITION 2.1. Let g(t) and h(t) be twice continuously differen-
tiable functions on (a,f), 1 < a < f < oo, satisfying the following
conditions for some K and L with0 < K < L < oo:

Lg(t) = 0;

!
t .
2. gT() is monotone ;
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3. ¢"(t) = €8 {1-p(t)} with K < |u(t)| <.L;
K()

4152 < min(§,3) 5
5. [B(t)] < min (X, 1).

Then, for s(t) = ¢* £ g(t) + h(t) and w € C'(a, B), we have

s
/ e*® w(t) dt

a

<C ( ”w”Lw(a,ﬁ) + “wI”Ll(a,ﬂ))

where C = C(K, L) is a constant depending only on K and L.

Proof of Proposition 2.1. We may assume that X’ < 1 < L without
loss of generality. Let’s first consider the case s(t) = 2+ g(t) + h(t).
Conditions 1, 3, 4, and 5 imply

s't) > t+4'(t)
and

(L+2)(t+d()
- :

|S”(t) ! S

An integration by parts gives:

[eowoa] < (o [ L0 a) (ot o)
< (2+ (L+2) /j 215 dt) (IlwllLooHIW'iiLl)

< @+ (Il + ).

Now, we turn to the other case s(t) = tZ — g(¢) + h(t).
Let 3’ € (o, 8] and write

/

g
/awa=h+m
with

L:/wwﬁJ=Lz

Ji
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Ji

and

JQ = (a,ﬂ') \ Jl.

Each of J; and J; is, by condition 2.1, either empty, a subinterval, or a
union of two disjoint subintervals. To estimate I;, we observe that for

te Jy,
2K
"t)y-2| > —.
") -2 2 3
So, we have
K
”t > _.
0l = &
An application of van der Corput’s lemma gives us
5| < 10v6
VK
It remains to estimate I;. By conditions 3, 4 and 5, we have
g'(t) K(t)
! > 2| |1- 24| - | =L
@] > 2 ( 2t ‘ 2t
K K tK
> (—-=) = =
=, (3 4) 6’
t g
"W > = [1-
@l = 2’ 2t |
and
!
t
o) < 2+ 20 1y )41
't
< 2(L+2) (1+ 92(t)>

IA
[
—~
e~
+
(S
~
N
no
+

‘Q\

I
-
N—
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for t € J,. Integrating by parts, we obtain

s B ) g
< i_;l_+ 168(}1{32—}-2) [ ?t-dt
N A
Thus, we get
/ ’ O dtl < ¢

for any ' € (o, 8]. Additional integration by parts provides the desired
estimate. O

As an application of Proposition 2.1, we get the following estimate
which will be useful in treating plane curves and space curves.

PROPOSITION 2.2. Let 0 < a < b < 00 and let ¢ : (a,b) — R be a
real valued C® function such that the following conditions hold for some
constants C) and Cy with0 < C; < Cy < 00 :

1. ¢"(z) never vanishes ;
2. Cif(2)? < |p(e)d"(z)| < Cod(a)?;
3. |¢(z ¢>”' )| < ol (@) ()] ;
4 L'dle diL‘ S CQ.

g

Fory R, we let

b .
Iy (5,7]) = |n|%/ ei(§x+n¢(2)) ’¢//(x)|%+yz de.
Then,

3
ILEm| < C(+1)k,
where C = C'(C}, C3) is a constant depending only on C; and Cs.

Proof of Proposition 2.2. We may assume without loss of generality
that n > 0, £ # 0, and ¢(z) and ¢/(z) never vanish. A change of variable
2=y ]¢(ac)l, allows us to write
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8
LEn =+ [ 0 )

«a

where
s(t) = t* £ g(t) + h(t),
9(t) = sgn(¢(z)¢'(2)) €] =,
h(t) = 2y log|¢'(z)| -y log|é(z)],
and
_ [ Ve@#FaE)
v = 2( @) )
It is straightforward to verify the following identities:
e = 26t
0= S e
w2181 1 fo P(x)¢"(x)
70 = 2 {12 Yo
g [, . $@e)
= o {2 05
= 9D 5y,
where
— o #(=)¢"(z)
MO =2 gy
We have
Also,
2t ¢"(z) 2t #(z)

O =% 5 s Ve W)

dy o(z)¢"(z) 2y
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h”(t) — 2_y + 4y{ 1¢(x)¢ll( )

12 2 ¢/($)2
2 ($) | )@  20()¢ ()
+n¢’(z)<¢’(r) rTER ¥ (2)® ) }
_ @{1_2 <x>¢"<> |
t2 (z)?
¢I/(:L.) ¢/I m) ¢(x)¢ll(1:)
<¢'<z ¢' BRIk )}
2 ¢(m)¢”(m
- = {1 HETeE

+4.

Ha)¢'(z) $@¢"(@) _ (¢<x>¢"(x>)2}_
F@r  ¢@)(z) ()
Conditions 2 and 3 imply

K(8)] < Cslylt™,
and

[R'(t)] < Calylt?,

Thus, for t € (a, 8) N (4, 00)

|P'(t)] < min (Cl,%) ¢,

and

K] < min (cl,%),

Cs, 1 1
maX{\/gflylz,\/?Ca IyP}-
Hence, by Lemma 2.1,

/ eis(t) dt‘ < é
(,8)N(8,00)N(1,00) B

where

]

i
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Here, C depends only on C; and C,. A trivial estimate on the possibly
remaining interval provides us

s . ;
/ gis) dti < C+(@B+1) < C(Q+1y])7,

where (' is a constant depending only on C; and C5. The same argument

goes through for
g
/ e*® dt

whenever 3’ € (a, 3]. Hence, by an integration by parts, we obtain:
(A 1
[ 0w a] < i)} (s o)+l
a a<t<ﬂ ’

20Co(1 + [y] )?

3
< C (1 + ly| )2.
The proof is now finished. O

=

< C'(1+yl)

IA

3. Preliminary estimates

Consider v : [a,b] — R? of the form (t) = (¢, ¢(t)) with ¢ being a
sufficiently smooth function. Let T}, and 7, be defined by

T, f(z) = / f(z —y(®) dt

and

b 1
7,10 = [ fa-20) |#0]
Then, we have the following:

LeMMA 3.1 (Littman). Suppose there exists a positive constant C
such that |¢"(t)| > C for a <t < b. Then, T, maps L? (R?) boundedly
into L (R?).

LEMMA 3.2. Suppose there exist constants C) and Cy with 0 < C <
Cy < oo such that

1. ¢"(z) never vanishes ;
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Ci¢'(z

< ()" (2)] < Coglla);
()" x)l < Go|¢/ ()¢ (2)] ;
s 131 @)¢' @)

2.
3.
4. 7@ dx S Cg.

Then, T, maps L? (R?) boundedly into L3 (R?)

Proof of Lemma 3.1 and Lemma 3.2. Let {D
analytic family of distributions given by

1 z
<Dz,h> = I‘(ZH) /Rh(s) Is|* ds

as in [4]. Consider {T!f7 D —
defined by

T2 f(1,2)

and

T; f(z1,22)

b
/ (D, f (xy —t, 29 —

=), [#"(®)
Note the inequalities

. 1
Tp.,f oo < 'F (_1%_)‘ llf“Ll

and

Tt

LOO

|F 1+z)| ”f“L1 )

when R 2z = 0. Let Iy and 1},’7 be the Fourier multipliers of T,;%”y nd
3, .
T atw

27, respectively. Then,

]77|%—iy(277)%_iy ’ —2mi(Et-+ne(t
IV (&) = : e~ 2mi€tnd(t)) gy
o P-4 Ja
and
37V (2r) 2w
Ig-y (6,77) = M_)—_.

’ —2m(£t+n¢
(z - %)

) (g ()|

= / (Do, f (21— t,20 — B(t) — 5) ), dt

201
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By van der Corput’s lemma and Proposition 2.2, we obtain

o
If;(gﬂl)i < |—§‘——
472

and

£n)'

which mean by Plancherel’s theorem

3. C
|=F 5|, < = 1l
= |0 (§- %)
and
~§+i 1+ yl)®
b g < QUKD
' ~rG-%9)l
Therefore, Stein’s analytlc interpolation theorem [9] applies and we
obtain the desired L? — L% boundedness of T, and T, . O

4. Convolution estimates for finite type plane curves

Based on Lemmas 3.1 and 3.2, we will prove inequality (1.3) for var-
ious plane curves. Finite type curves will be discussed in this section
and the flat ones will be in the following section. First we give a global
example extending inequality (1.2).

PROPOSITION 4.1. Let k € R and «(t) = (t,tk) , t > 0. Then, there
exists a constant C such that

(4.1) “Tayf”m(W) < C'”f“L%(IRZ’)
for any f € L? (R?).

Proof of Proposition 4.1. This is an immediate consequence of Lemma
3.2. |

REMARK 4.2. 1. The estimate (4.1) is global.
2. When k ¢ {—1,0,1}, (4.1) is the only LP-L? estimate.

In the rest of this paper, we focus our interest on local results.
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PROPOSITION 4.3. Let k > 1, and suppose that ¢, is a sufficiently
smooth function defined near t = 0 satisfying ¢ (t) = O (t+7¢) as
t—0+,75=0,1,2,3, for some € > 0. Let y(t) = (t,t’c + ¢1(t)). Then,
for some ty > 0, T,, defined by

T, 5@ = [ =) A0 d

maps L2 (R?) boundedly into L3 (R?).

Proof of Proposition 4.3. It suffices to show that
/ " d P(t)d(t)
o |dt ¢(t)?

for some ty > 0, where ¢(t) = t* + ¢y(¢). But,
4 gt)e"(t) _ #()°"(¢) + o) ()" (t) — 26(t)¢" (1)

¢ ¢'(t): ¢'(t)?
O(tBk—4+e)

¢(t)®
— O(t_H—E).

Clearly for some t; > 0, % %ﬁ;@ is integrable over the interval (0, %)

which completes the proof of Proposition 4.3. |

dt < oo

Now, we are in a position to state the following result on finite-type
curves.

THEOREM 4.4. Let v be a sufficiently smooth compact plane curve
of finite-type. Then, the corresponding convolution operator with the
affine arclength measure maps L? (R2) boundedly into L3 (R?).

Proof of Theorem 4.4. Compactness implies that there are only finitely
many degenerate points on the curve. According to Lemma 3.1, we can
assume, without loss of any generality, that v is degenerate only at t = 0
and the interval (0, ¢y) is as small as we want. Moreover, by using a linear
motion in R?, we can further assume that ~ is given by

Y@t = ([t + ), + %))
for 0 <t < ¢y with some integers 0 < k < l. Here, ;(t) and 7,(t) satisfy
,Y§J')(t) -0 (tk—j+1)
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and ‘
’)’é])(t) =0 (tl—-]+l)
ast — 0+, for j = 0,1, 2,3. Making a change of variable
S = tk +’)’1(t)
in the integral defining 7, f and writing
¢(s) = '+ ()

we can bring the operator into the form

T = [ 1 -sm=0) 9O &
Notice that ¢(s) satisfies
$(s) = sk + du(s)

where
#(s) = 0 (st
as t — 0+, for j = 0,1,2,3 and for some positive €. Proposition 4.4

finishes the proof. O

Real analytic plane curves not contained in any straight line is of
finite type. So, we have the following:

COROLLARY 4.5. Let v be a compact real-analytic plane curve and
T, be the convolution operator associated with the affine arclength mea-

sure supported on . Then, T, maps L? (R?) into L? (R?).

REMARK 4.6. Notice that the type set of T;, in Proposition 4.3, The-
orem 4.4 and Corollary 4.5 is the triangle with vertices at (0,0), (1, 1),
and (3,1).

5. Convolution estimates for flat plane curves

Let I > 0 and consider the family of functions {7 }reny {0y defined by

Tu(t) = exp (-hk (%)) :
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where hy(t) are defined inductively with
ho(t) =1
R (t) = exp (hi(t)), fork=0,1,---.

Then, we have:

THEOREM 5.1. For any t, > 0, T given by

to i
2 flzy,2) = / flzr = t,z2 = a(®) V@) dt
0
maps L? (R2) boundedly into L® (R?).

Proof of Theorem 5.1. According to Corollary 4.5, we have only to
prove the existence of ¢, > 0 such that Tj¢ is bounded from L? (R?) into
L? (R?). We begin with some calculatlons

) = w1 () 7
= ’Ykz(t)ﬁ (tll) el

1 l
o = wOH(3) m

1 1 1\?
DI (@)}
1<h <k, 1#5

1 AWAAY
5 I () ()
1<k, h#d
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-~ T ()
Yra(t)
/ t)3
" t ~ 7kl(
7kl( ) 7kl(t)2
as t — 0+.

Thus, there exist ¢, > 0, C; and C, with 0 < Cj, Cy < oo such that
for 0 < t < ty we have

L oyu(t) >0, v,(t) > 0, v(t) > 0;

2. Ch < %’é@ < Cy;and
3.

< C.

i(8) 1 ()
’Y,’cz (t) "/;;Iz (t)

According to Proposition 3.2, it therefore suffices to show that %@
ki
is monotonic. But,

) W) _ Zk: 1 i 1+1 #
JEAY TRV . . ~ - F—

V() j=1 Hj1=j+1 hjy (Zlf) h; (t_') y Hj=1 h; (Elf)
is decreasing. This finishes the proof of Theorem 5.1. O

REMARK 5.2. The type set for T} is now determined to be the tri-

angle with vertices at (0,0), (1,1) and (2, §).
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