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LAW OF LARGE NUMBERS FOR BRANCHING
BROWNIAN MOTION

Hvye-JEoNG KANG

ABSTRACT. Consider a supercritical Beliman-Harris process evolv-
ing from one particle. We superimpose on this process the additional
structufe of movement. A particle whose parent was at x at its time
of birth moves until it dies according to a given Markov process X
starting at z. The motions of different particles are assumed inde-
pendent. In this paper we show that when the movement process
X is standard Brownian the proportion of particles with position
< v/t b and age < a tends with probability 1 to A(a)®(b) where A(-)
and ®(-) are the stable age distribution and standard normal distri-
bution, respectively. We also extend this result to the case when the
movement process is a Levy process.

1. Introduction

Let {Z(t);t > 0} be a supercritical Bellman-Harris process evolving
from one particle at time ¢ = 0 whose lifetime distribution is G and
offspring distribution is {px}. That is, the process starts at time 0 with
one particle of age 0 and it dies at time A and produces ¢ offsprings where
A and ¢ are independent random variables with distributions G and {p;}
respectively. Then each particle dies and produces independently of each
other in the same way as its parent, an so on. We superimpose on this
process the additional structure of movement. A particle whose parent
was at = at its time of birth moves until it dies according to a Markov
process starting at z. The motions of different particles are assumed
independent. If the movement process is a Brownian motion the process
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is called branching Brownian motion, whereas we call it a branching Levy
process for a Levy movement process.

For any family tree w, let Z(t,a,b,w) be the number of particles
living at time ¢ which are of age at most @ with position < b and
let A(t,a,w) = Z(t,a,00,w)/Z(t,w), where Z(t,w) = Z(t, 00, 00,w).
Then under ‘jlogj’ condition A(t,a,w) converges to A(a) the stable
age distribution with probability 1 (see Athreya and Kaplan (1976)).
If the underlying movement process is Brownian then it is known (see
Asmussen and Kaplan (1976)) that under finite second moment con-
dition on the offspring law Z(¢,00,vt b,w)/Z(t,w) 2% &(b) where
o(b) = (2m)"1/? f_boo e~ dz. Thus one would expect the proportion of
particles with proposition < v/t b who are younger than or equal to
a tends to A(a)®(b). Indeed this essentially turns out to be the case
here under ‘jlog j’ condition. Furthermore, we can extend this result to
branching Levy processes.

2. Statement of results

We make the following assumptions throughout. Sometimes they will
appear in lemmas and theorems explicitly and sometimes not, but they
will always be in force.

(A 1) po =0,

(A2) 1<pu=327p; < oo,

(A3) X 72,(jlogj)p; < oo.

The assumption (A 1) is primarily for convenience of exposition. Other-
wise one has to keep qualifying “on the set of explosion”. (A 3) guaran-
tees (see Athreya and Ney (1972)) the existence of random variable W
such that

(1) lim e *Z(t)=W, and P(W >0)=1,

where a = a(u, G) is the Malthusian parameter for u and G defined by
the root of the equation 4 [;° e=*dG(t) = 1.

THEOREM 1. Let the underlying movement process be a standard
Brownian motion. Then fora € R*, b€ R,

Z(t,a,/tb,w)
Z(t,w)

1

Hi(a, Vtb, w) 2%, A(a)®(b) as t— oo,



Law of large numbers for branching Brownian motion 141

_ foa e (1 — G(u))du i
Jo e (1 — G(u))du

1 b _2?
where  ®(b) = = [° e Tdz, and A(a)
the stable age distribution.
Now consider a branching Levy process. Let {X(¢);t > 0} be a under-
lying Markov process such that X (0) = 0 a.s. Suppose that {X(¢);¢ > 0}

is stationary with independent increments and that for some measurable
functions a(t) and m(t)

Y as t— oo,

2) Y(t) =

where P(Y < z) = F(z) is a nondegenerate and continuous distribution.
Then we have

THEOREM 2. Suppose (2) holds with a(t) = t°Li(t) and m(t) =
t?Ly(t), where ¢ > d > 0, and L), L, are slowly varying functions
at infinity such that

Lo(t
lim sup 2(t)

tmoo | Ln(t)
IfE(|Y|*) < oo for some u > 1/c, then for any a € R, b € R,

Z(t, a, a(t)b + m(t), w) as.
209) — A(a)F(b)

as t— oo.

<0

Hi(a,a(t)b+ m(t),w)

3. Preliminary results
In the proofs to come we make use of the following lemmas. The first
one can be found in Nerman (1981).

LEMMA 1. Let N = sup,,o{e"*Z(t)} with  the Malthusian param-
eter. If 372 | (jlog 7)p; < oo, then E(N) < oco.

We add a superscript ¢ to random variables and their moments to
indicate the case when P is supported by those w’s which start with one
particle of age a. Then we have the following

COROLLARY 1. Put M = supsup{e™*Z°%(s)}. If 3 32,(jlogj)p; <

s20 a>0
oo, then E(M) < co.
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Proof. We first note that

£
G Zos) =I(X" > 8)+ Y _ Zi(s = )

=1
where {Z;(s);s > 0}, 7 = 1,2,---, are i.i.d. with {Z(s);s > 0}. So we

have

13
e Z%s) = e *“I(A*>s)+ Z e“’(s“’\a)Zj(s — A)e

i=1

e—a(s—A“)zj(s _ /\a)

M)

IA

1+
1

<.
il

< 1+ M;,

“-

il
A

J

where M; = sup,soe™*°Z;(s). Then M < 1+ 35, M;. Since 322,
(jlog j)p; < 00, E(M,;) < oo (Lemma 1) and hence by the independence
of {M;} and &, E(M) <1+ uE(M;) < co. O
The following two lemmas are in Athreya and Kaplan (1976).
LEMMA 2. Let V(y) = p [ eGY(dt) where G¥(t) = SE-00
and let n, = [;°e (1 — G(t))dt/u f;° te**G(dt). Define m¥(s,a) =
E(ZY(s,a,0)), m¥(s) = E(Z¥(s,00,00)), then for any a > 0
sup(jm¥(s, a)e™** — mV (y)A(a)], [m*(s)e™** =V (y)]) — 0

y=0

as s -— 0.
LEMMA 3. Let Vi(w) = Z]-Z:(tl’“’) V(aj(t,w)), where {a;(t,w);j = 1,
-+, Z(t,w)} is the age-chart at time t. Suppose 2., (jlogj)p; < oco.
Then for every § > 0,

lim Vs () =n;! as.

n—oo Z(nd,w)

The proof of the following lemma can be found in Athreya and Kang
(1998).
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LEMMA 4. Let {F,}° be a filtration contained in (Q,B, P). Let
{Xni;m,i = 1,2,---} be a double array of random variables such that
for each n, conditioned on F,, the sequence {X,;;i = 1,2,---} are inde-
pendent w.p.1. Let {N,;n = 1,2,---} be a nondecreasing sequence of
nonnegative integer valued random variables such that for each n N, is
F,.-measurable. Assume

(i) that there exists a random probability measure @ on [0, 00) such
that for some constant 0 < C < 0o,

sup P(|Xni| > t|F,) < CQ(t,00) forall t >0 w.p.l,

(i) that [°Q(¢ oo)dt <oo w.pl, and
Ny,
(iii) that liminf, —= N L>1 wpl.

n

Ny

1
Then, — > (Xni — E(Xw)) — 0 wpl.

=1

4. Proof of Theorem 1

We begin with the following representation appealing to the additive
property of branching processes,

Z(tw)

(4)  Z((t+s),a,1/(t+s)bw) ZZ:Z((:: s,a,4/(t + s) b,w)
p ‘

where {(a;(t,w), z;(t,w));7 = 1,2,---} is the (age, position)-chart at
time ¢ and Z;’g :’)) (s,a,z,w) is the number of particles at time (¢ + s)
whose age < a and whose position is < z in the line of descent initiated
by the particle of age a;(t,w) and position z;(¢,w) at time ¢t. With abuse
of notation we write (4) as (suppressing w and (¢,w)),

Z(t)

(5) ((t+5),a,\/(t+5)b) = ZZ% a,v/(t+s)b)
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Let F; be a o-algebra containing all the information up to time ¢. Noting

that (see Asmussen and Kaplan (1976))

E(Z3 (s, a, V(t+38)b)|FR) = E(Z%(s,a,

= m%(s,

we decompose (5) as follows;

((t+s),a,7/(t+s)b)

+8)b—z;)|F)

o V(t+s)b—z;
NG

2(8)

Z(t)

R

—Z{Z% o ST -
{ (s a)<1><V (t+35)b- ) nle"‘sV(aj)A(a)@(b)}.

()

+n1A( YB(b)e** VL.

So

H(t+s) (a)

where

at(51 a, b)

bt(s’ a, b)

_ Z((t+s),a,4/(t+5)b)
(t+s)b) = Z((t+s))
_ a:(s, a,b) + by(s, a,b) + c,A(a)P(b)
T (s, 00,00) + by(s,00,00) + ¢
2(t)

{ 7% (s,a,/(t+5)b)
asmti(s, a) <\/(t +\;)§b - g;j> }

—€

1 20 V(E+5)b—z;
—Z{e m (s,a)@( NG )

)

i=1

—mV(aj)A(a)@(b)},
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Following Athreya and Kaplan (1978) we first discretize the process, i.e.,
for § > 0 let t, =nd and s, = s(t,) and consider

(0, /ad T o b) = o5 80) & bns(5n, 4,6) + o Aa)R()

s (Sp, 00, 00) + bys(8n, 00, 00) + Cns

n6+sn

Note that ¢,s = 1 as n — oo (Lemma 3). Since e™*Z;(s, a, 1/(t + s)
b) < M = sup,sgsup,sefe *Z%(s)}, and E(M) < oo, we can see
easily that a,s(sn,a,b) 2%, 0 as n — oo for any choice of sequence s,

such that s, — 0o as n — oo from Lemma 4.
Now we show that for s, = (nd)® — né

(6) bné(sm a, b) 22, 0 as n-— oo.

Let {(aj,z;);7 = 1,2,---} be the (age, position)-chart at time nd. For
j=1---,Z(nd), put I,,; = I(lvz—:ﬂ <+vnd), and J,; =1—1I,;. Then

brs(Sn,a,b) = b,lus(sn, a,b) + bfw(sn,a, b) + bf’u;(sn, a,b), .
where
b}u;(sn, a,b)

Z(n) - '
22(25);{@<‘/”gb_\2—5 ;S)—(b(b)}

€7 m% (s, a) 1,
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By the continuity of ® and Corollary 1, it is easy to see that bl,(s,, a, b)
22,0 as n — o0o. On the other hand, for any € > 0,

Z(nd)
P (om0, 8) > cl0ws) < Ak Y 2E()
< 0o —avmd))
L B0,y
eVlr

where G; = 0(Z(s);s < t) is the o-algebra generated by the usual
Bellman-Harris process with no informations about positions. So 3 .-,
P(|b25(sn, @,b)| > €|Gns) < 0o and by the conditional Borel-Cantelli
lemma b2;(sn,a,b) = 0 as n — oo. Finally we have b3;(s,,a,b) —

0 as n — oo directly from Lemma 2. So we have proved that
(7) Hwsp(a, (n8)*?b) 22 A(a)®(b) as n — oo.

To prove H,s(a,v/ndb) 22 A(a)®(b) as n — oo we adopt the
method used in Athreya and Kaplan (1978).

Let 8, = 6'/3. For any n > 1, there exists an integer m,, > 0 such that
mé < n < (m, + 1)%. Put k, = (m, — 1)® then 3(m,, —~1)2 < n—k, <
6(m, + 1) So as n — oo, k, — oo as well and further

Vi VE ViR 6(mat])

8 0 = A SR
O V2R T VaevE S Tl
—0 as n — 00,
_1)3/2
(9) v > (mn — 1) — 00 as m — 00.

vn—k, — 6(m,+1)
Fix ¢ > 0 and define B; = (—00,b — €], By = [b+¢€,00), and By =
(b—¢€,b+¢€). Then

H,s5(a,Vndb)

_ as((n—ka)8,0,0) + 300 d 5((n — Kn)d, 0, b)
aknﬁ((n - kn)(sa 0, 00) + bkné((n - kn)(sa o0, OO) =+ cknJ’
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where

d;'c,,é((n - kn)é’ a, b)

Z(knb)
1 Vk0b—1x;
= E e~ k)8 ((n — k)6, 0)® | e | I 5. (2;),
Z(kn(s) = ((n ) ) (n — kn)(s knd. z( ])

and {(a;,z;);5 =1,2,---} is the (age, position)-chart at time k,6. We
already know that

L ma‘x{akné((n - kn)67 a, b)7 akné((n - kn)57 00, OO)} == 0
as n — oo (Lemma 4),

2. by s((n — k,)8,00,00) 2250 as n — oo,

3. ¢ -1 as n— 00 (Lemma 3).

Furthermore, since k,d = ((m, — 1)&)3, (7) with a = oo implies

Z(knf)
E(M)
(1) dyln-k)ab) < Zoes ;I\/Imm(xj)

— E(M)®(B3) as n — oo,

where &(B) = %/ e'y2/2dy. Note that if z; € V/k,0By, from (8) and
T JB
9

\/Eb—fj _ \/E*\/kn_(sb_'_\/mb—mj
Vot | Jookp Ve
V=V, Ve
\/(n — k) \/(n — k)

— 00 as n — O0.
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So
1 Z(kn9)
limsup| 7 ; e 0 Pme((n = ka)3, ) g, (<)
~di 5((n — ky)é,a,b)
Z(knb)

= lim sup Z(li 5 Z e~en=ka)dmei((n — k,)é, a)
Vkndb— 1z,
(1 -2 ((n—_kn)—;— Iy, (=)

SE(M)(I—@(%))HO a.s. as n—oo by(9).

Hence

lim dj_5((n — k)0, a, b)
n—oo

Z(k,d)
1
_ 2 : —a{n—kn)d, ,a; _ — .

(11) = /R-’er e_a(n—kn)ﬁmy((n - kn)é, a)IBl (:I:)dené(y’ mx)
2 [ [ mV () A@dAW I @)dd() by Lemma 2 and ()

- mA@ee-<) [ Vi)
= A(a)®(b—¢).
On the other hand, if z; € v/k,0Bs,
Vnéb —z; _ Vnd — \/_b Vk,0b — a:]
Vn—k,)é Vin—k) Vin—k
VN — \/H p_ Ve
\/(n - kn) \/(TL - kn)

— =X as n — OQ.
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Hence limsup sup ————=L = —o0, and so
n—00 geVEd3B, v/ (1 — k)6
(12) di s(n —ka)8,a,) 250 as n— oo.
So recalling Lemma 2 and 3 we have
limsup |H,s(a, V'ndb) — A(a)®(b — ¢)|
< limsup |d; s((n — k)8, a,b) — A(a)®(b —¢)]
+ limsup |d} ;((n — k,)8,a,b) + limsup 82 5((n — k)6, a,b)]

< E(M)®(Bs) by (10) (11) and (12).
Letting € | 0, we get

(13) limsup | H,,5(a, Vnd b) — A(a)®(b)| =0 a.s.

n—oo

Now we prove that lim,_o, H(a,tb) = A(a)®(b) a.s. Let € > 0 and
d > 0 be fixed. Let nd <t < (n+ 1)§ and define

and the particle doesn’t cover a distant > vnée,

1 if jth particle at time nd doesn’t split until (n + 1)é
0  otherwise.

Let {(a;,z;);7 =1,---,Z(nd)} be the (age, position)-chart at time nd.
Since the lifetime and the movement of a particle are independent,
E(3j|Fs) = P(6; =11Fns) = P(A > 8| Fn5)P(E(6) < Vnde)
= (1-G%(8))P(§(8) < Vnde),
where £(8) = supg,cs |By(t)] with {Bo(t);t > 0} a standard Brownian

motion starting at 0. It is easy to see the following inequality from the
definition of ¢;,

Z(né) )
Z(t,a,Vtb) > Z I(a; + 6 < a)l(z; < Vné(b— €))d;.

J=1
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So

Z(t,a,\/tb) Z(né) 1
=0 > 70 Z(na).ZI( <a—8)I(z; < Vnd(b—¢))s;

- {A(né,a,b) + P(E(6) < Vnbe)B(nd,a,b)},

where
R

A(né,a,b) = Z08) Z I(a; < a—8)I(z; < Vnd(b—¢))
{(8; - (1 — G%(8))P(E(6) < Vnde)}

1 Z(nd)

B(nd,a,b) = mzf(ajga 8)I(z; < Vnd(b—€))(1 — G%(6)).

Since E(I(a; < a — §)I(z; < V(b — 5, — (1 — GH(5)) PEG) <
vnde)}) = 0 we apply Lemma 4 to get A(nd,a,b) 250 as n — oo.
On the other hand

B(né,a,b)
1 Z(nd)
= 2o > I(a; <a—8)I(z; < Vnd (b—e))

b Z I(a; < a—6)I(z; < Vnd (b —€))G%(9)

Z(né) Z(nd)

> Zh) D I(a;<a—8)I(z; < Vnd(b—e)) — 5) Z G (s

Note that Gs(a) = G*(d) is bounded and continuous except on a count-
able set. So

né)ZG: / Gs(w) A(du, nd)

(14) / Gs(u)A(du) as n— .
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Since P(£(6) < Vnde) — 1 as n — oo, (13) and (14) imply together
that

n—oo

liminf B(né,a,b) > A(a — 6)®(b—¢) — /000 Gs(u)A(du) as.

Further from (1) we have

.. o Z(nd) o Z(nd)
> S St S
R ZE 2 R T
— Tim3 Z(,né)e—an& —-ab _ ,—ad
= h,?l%i,‘f Z(n+ 1)6)e—°‘("+1)‘5e e a.s
Hence
(15)
lim inf &Zfl_(’_t_\)/_{_ll). > e *(A(a— 8)®(b—¢) — / Gs(u)A(du)) as.
b 0

Since Gj(u) — 0 ae. as § — 0, we see [;~ Gs(u)A(du) — 0 as § — 0
by the dominated convergence theorem. Letting 4 | O and then letting
e ] 0, we get from (15) that

Z(t,a, Vtb)

For the other direction we have the following inequality
Z(nd)

Z(t) — Z(t,a,vtb) > > I(a; <a-8)I(z; > /(n+1)6 (b+¢))é;
i=l1

and so
1-— Z(t,Za(,t\)/t_b) > ZZ(Z?{AI((MS’ a,b) + P(£(0) < \/ESE)B’(nd, a,b)},
where
1 Z{nd)
A(nd,a,b) = — %) Z I(a; < a—68)I(z; > /(n+1)é(b+¢))
{8; — (1= G(8))P(§(8) < Vnée)}

Z(né)

B'(n,a,b) = ﬁ Y 16 <a=0)(z; > it D (b+¢)

(1 - G5 (9)).
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The same arguments as above establish A'(nd, a,b) == 0 and

lim inf B'(nd, a, b)

n—oo

> (1—A(a—6)®(b+¢)) — /0 N Gs(u)A(du).

So

lim inf(1 — H,(a, Vb))

t—00

> e%(1 — A(a — 8)B(b+¢) — /0 " Gs(u) A(du)).

Letting ¢ | 0 and then letting £ | 0, we get

lim inf(1 — Hy(a, Vib)) > 1 — A(a)®(b).

- So we have completed the proof of Theorem 1.

5. Proof of Theorem 2

In this case we have the following representation

Z((t+ s),a,a((t + s))b+m((t +s)))
Z(t)

= Z Z3(s,a,a((t + 8))b+m((t + 5)))

j=l1

where {(a;,z;);7 = 1,2,--- } and Z;(s, a, z) are as defined in section 4.
Now put

a((t + s))b+m((t +s)) —z; —m(s)
a(s) ’

yj(t,S,b): j=17"'aZ(t),
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then we have the following decomposition

Z((t + s),a,a((t + )b+ m((t + 5)))
2()

Z{Z;;;(s, a,a((t + 8))b+ m((t + s)))
—m%(s,a) P(Y (s) < y;(t, 5,b))}
Z(t)

+ Zm (s,){P(Y(s) < y;(t,5,b)) — F(y;(t,5,))}
Z(t
+ Z{m (s,a)F(y;(t, s,b)) — €**n1V(a;) A(a) F(b)}
+’easn 1A(a)F(b)V;.
So we can write

Hys)(a, a((t + )b+ m((t + 5)))
_ @(s,a,b) + by(s,a,b) + c(s, a,b) + dyA(a) F(b)
N a:(s,00,00) + s, 00,00) + d;

?

where N
a(s,a,b) = Z{ T Z%(s,a,a((t + 5))b+ m((t + 5)))
—e“”m (s,a)P(Y (s) < y;(t, 5,0))},
bi(s,a,b) = t)g:e-as %(s,a){P(Y(s) < y;(t, 5,b))
—F(yj(t 50)},
cr(t,s,b) = Z{e o F(y;(t,5,0)) — nmA(a) F(b)V (aj)},
d = E%Vt.

Again from Lemma 4 we can see that for any sequence s,

an&(sma’ b) =2 01 anJ(Sn,O0,00) A 0 as n— oo
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and it is immediate from Polya’s theorem and (2) that for any choice of
sequence s,

max{bns(ss, a,b), bus(sn,00,00)} < E(M)sup|P(Y(s,) < z)— F(z)]
— 0 as n— oo

Now we show that for s, = (nd)® —~né, cps(sa,a,b) —>0 as n — oo.
Note that
(17)
‘m(né + 8,) — m(s,) — m(nd)
a(sy)
(nd)* Ly((nd)®) — ((nd)® — nd)¢Ly((nd)?® — né) — (nd)%Ly(nd) ‘
((nd)? — nd)L((nd)? — nd)

Ly((nd)®) — (1~ A )sz((né)"—mi)_ 1 Ly(nd)
Li((nd)3-nd) (nd8)2/  Ly((nd)3—nd) (né)2¢ L1((nd)3-ns)

(T = ) ()" — o)

— 0 as n—o o0
and that
(18)  y;(nd, sp,b) a((n5)3)b n m((nd)%) — m(s,) — m(nd)
o a(sn) asn)
T - m(nd) ' a(né)
a(n5) a,(sn) ’

Let I =I{|%%)| < a(nd)} andlet Jn;=1-1I, then

Cns(Sn, @, b) = c,lus(sn, a,b)+ cfu;(sn, a,b) + cf’u;(sn, a,b),

where
1 Z(nd)
Z(n0) ; e m%(s,, a){F(y;(nd, sn, b)) — F(b)} .;,

1 v
Cps(Sn, @, b)

Z(nd)
1 —QSn 00 B
Cfus(sna a, b) = m—) Z € "m ](sna a){F(y](n67 Sn,y b)) - F(b)}Jn]
j=1

1 Z(né)

c35(5n, @, b) i) ; (e m (s, a) — 0,V (a;) A(a) }F(b).
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From (17) and (18) we conclude that cl;(s,,a,b) == 0 as n — oo.
On the other hand, for any ¢ > 0,

(M Z{(nd)
P(elom el > o) < 7008 | D Jul

:
- 2E€M)p< (Z:S()"‘” 2a(n6)>
e ( e ) |

Since a(t) = t°Ly(t) with u > 1/c and since E(|%| ) — E(|Y*))
as n — 00,

S P(Cs(5m,0,b)] > €lGns) < 00

n=0
Hence c24(sn, a, b) 22,0 as n — 00, by the conditional Borel-Cantelli
lemma. Finally it can be easily shown from Lemma 2 that c34(sy, a,b) =

0 as n — oo. Since d,; == 1 as n — oo (Lemma 3) we have shown that
for a € R*, b€ R,

Hmsp(a, a((nd)®)b + m((nd)®)) == A(a)F(b) as n — oo.
The techniques used in the proof of Theorem 1 can be applied to prove
H,5(a,a(nd)b+ m(ns)) 2 A(a)F(b) as n— oo

with some modification. We use the notations m,, k,, B;, 1 = 1,2,3
which are defined in the proof of Theorem 1 without any change, but we
define for each i =1,2,3

1 Z(kn8)
dhsl(n = kn)8,a,b) = Za—s D e mt(n ~ k.)S0)
n j=1

F(y;(kn0, (1 — kn)0, b)) La(k,5) Bt m(kas) (T5)

where {(aj,z;);j = 1,---,Z(k,0)} is the (age, position)-chart at time
knd and {y;;j =1,---,Z(kn0)} is given by (16).So we have

H,5(a,a(nd)b+ m(nd))
a’kn5((n - kn)(5, a, b) + bknJ((h' - kn)57 a, b) + Z:‘fl5 d?cnd((n - kn)5, a, b)
ar,5((n — ks)d, 00,00) + cx,5((n — k)3, 00, 00) + di6 '
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We already know that for any § > 0 and for any a € R* U {0}, b €
R U {00}

ars((n —ky)d,a,0) == 0 as n — oo,

bis((n — ky)8,a,6) = 0 as n — oo.

Furthermore, since k,6 = ((m, — 1)6%)® ¢; s((n — k,)8, 00, 00) = 0,
and di s — 1 (Lemma 3) as n — oo. With some notational change the
arguments in the proof of Theorem 1 give us

limsup |d} ;((n — k)6, a,b)] < E(M)(F(b+¢) — F(b—¢)),
limsup |d}, 5((n — kn)d,a,0) — A(a)F(b—€)| =0,
limsup |d} ;((n — kn)é,a,b)| = 0.

n—oo

Letting € | 0 for a € R*, b € R we have
H,s(a,a(nd)b+ m(nd)) 2= A(a)F(b) as n — oo.

Now the proof of Theorem 2 can be completed with the exactly same
lines as that of Theorem 1 and so it is omitted.
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