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CODIMENSION REDUCTION
FOR REAL SUBMANIFOLDS OF
QUATERNIONIC PROJECTIVE SPACE

JUNG-HwaN KwON AND JIN SUK PaAK

ABSTRACT. In this paper we prove a reduction theorem of the codi-
mension for real submanifold of quaternionic projective space as a
quaternionic analogue corresponding to those in Cecil [4], Erbacher
[5] and Okumura [9], and apply the theorem to quaternionic CR-
submanifold of quaternionic projective space.

1. Introduction

In general, it is very hard to classify submanifolds immersed in a
Riemannian manifold even though the ambient manifold is specified,
and so the so-called codimension reduction problem is sometimes very
important role in the theory of submanifolds.

The codimension reduction problem was investigated by Allendoer-
fer [1] in the case that the ambient manifold is a Euclidean space and by
Erbacher [5] in the case that the ambient manifold is a real space form.
On the other hand, as a complex analogue for submanifold of complex
projective space, Cecil [4] proved a codimension reduction theorem for
complex submanifold and Okumura [9] a theorem corresponding to
those in [4] and [5] for real submanifold.

In this paper we prove a quaternionic analogue for real submanifold
of quaternionic projective space which may correspond to those in [4],
[5] and [9]. We mainly follow Okumura’s method in his paper [9].
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2. Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kihler manifold.
Then, by definition, there is a 3-dimensional vector bundle V' con-
sisting with tensor fields of type (1,1) over M satisfying the following
conditions (a), (b) and (¢):

(a) In any coordinate neighborhood U, there is a local basis {F, G,
H} of V such that

(2.1) {F2=——I, G?=-1I, H? = -1,
: FG=—-GF=H, GH=-HG=F, HF = —FH = G.
(b) There is a Riemannian metric g which satisfies the Hermitian

property with respect to all of F', G and H.
(c) For the Levi-Civita connection V with respect to g

YF 0 r —q F
(2.2) VG |=}{-r 0 »p G
VH g —-p O H

where p, g and r are local 1-forms defined in /. Such a local basis
{F,G,H} is called a canonical local basis of the bundle V' in U(cf.
[6,7]).

For canonical local bases {F,G, H} and {'F,’G,’H} of V in coordi-
nate neighborhoods I/ and ‘U respectively, it follows from (2.1) that in

unu
'F F
'G ) = (S:,;y) G (-'L'> y=1, 2, 3)
'H H

with differentiable functions s;,, where the matrix S = (sgy) is con-
tained in SO(3). As is well known, every quaternionic Kahler manifold
is orientable(cf. [6,7]).

Let M be an n-dimensional submanifold isometrically immersed in
M and let i the isometric immersion. Then, for any tangent vector field
X and normal vector field € to M, we have the following decompositions
in tangential and normal components (In what follows we will delete ¢
and its differential 7, in our notation):

(24) FX = ¢X +u(X), GX =¢vX +v(X), HX =0X + w(X),
(2.5) F&=-U¢+ Pr€, G§¢ = -V + Pg€, HE = —W, + Pyé.
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Then ¢, ¢ and 6 are skew-symmetric endomorphisms acting on the
tangent bundle TM, and Pr, Pg and Py define those on the normal
bundle TM*L. Also u, v and w are normal bundle valued 1-forms on
TM. 1t is easily verified that

(2.6) 9(X,Ue) = g(u(X),€), 9(X,Ve) = g(v(X),$),
g(X, W&) = g(w(X)’é)
for any X € TM, £ € TM+*, where and in the sequel we denote the

induced metric form that of M by the same letter g. Applying F to
the first equation of (2.4) and using (2.1), (2.4) and (2.5), we have

$*X = —X + Uyx), uw(@X)=—Pru(X).
Similarly we have

(2.7)

$*X =X + Uyx), VX = -X +Vy(x), 2X = -X + Weu(x),
(2.8)

w(@X) = —Pru(X), v(¥X) = —Pev(X), w(0X) = —Pyw(X).

Next, applying G and H to the first equation of (2.4), respectively and
using (2.1), (2.4) and (2.5), we have

0X + w(X) = —p(¢X) — v(¢X) + Vy(x) — Pou(X),

YX +v(X) = 0(6X) + w(dX) — Wy(z) + Pru(X),

and consequently

(2.9) YoX = —0X + Vu(z), v(pX) + Pou(X) = —w(X),
(2.10) 06X =X + Wy(y), w(éX)+ Pru(X) = v(X).
Similarly we have from the other equations of (2.4)

(2.11) oYX = 60X +Uyx), u(®¥X)+ Pro(X)=w(X),
(212) 09X = —X + Woe), w(X) + Pao(X) = —u(X),
(

(

2.13) ¢0X = —9yX + Uw(m), u(6X) + Prw(X) = —v(X),
2.14) POX = X + Vw(z), v(0X) + Pow(X) = u(X).
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By the quite similar method as above, we have from (2.5) that

(2.15) Pr¢ = —t+u(Uy), Pg’¢=-t+v(Vp),
Pp%¢ = —€+ w(Wp),

(2.16)  ¢(Ue) = —Uppe, ¥(Ve) = —Vpge, O(Wﬁ) = —Whpye,
(2.17) We = —Vppe —¢Ue, PoPpé = —Pu&+v(Us),
(2.18) Ve = Wppe + 0Ug, Py Pr€ = Pgé + ’w(Ug),
(2.19) We = Upge + ¢Ve, PrPg€ = Puf +u(Ve),
(2.20) Ug = —Wpge — Ve, PuPgé = —Pp€+ w(V),
(2.21) Ve = ~Upye — ¢We, PpPé = —Pgt +u(We),
(2.22) Ue = Vpye + vWe, PoPyé = Ppé + ’U(Wg).

We denote by V the Levi-Civita connection of M and by V* the
normal connection induced from V to TM+. Then they are related
by the Gauss and Weingarten equations (In what follows we will again
delete 7 and its differential 7, in our notation):

(2.23) VxY =VxY + h(X,Y),
(2.24) Vxé=—AX + Vx§,

where h is the second fundamental form and A, the shape operator
with respect to the normal vector field &.

Differentiating the first equation of (2.4) covariantly and using (2.2),
(2.4), (2.5), (2.23) and (2.24), we have

(225 (Vyd)X =r(Y)9X — q(Y)0X — Unv,x) + Aux)Y,
T (Vyw)X = r(YV)u(X) — q(Y)w(X) — h(Y; $X) + Prh(Y, X),

where (%yu)X is defined by (%yu)X = Viu(X) —u(Vy X).
Similarly, from the other equations of (2.4), we have

(2.26) (Vy) X = p(Y)0X —r(Y)oX — Vv, x) + Aux)Y,
T (Vyo)X = p(V)w(X) = r(Y)u(X) — H(Y, $X) + Ph(Y, X),
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(2.27) (Vy0)X = q(Y)¢X —p(Y)PX — Wh(y,x) + Aw(x)Y,
T (Vyw)X = g(Y)u(X) - p(Y)u(X) — h(Y,0X) + Puh(Y, X),

where (Vyv)X = Viv(X) — v(VyX) and (Vyw)X = Viw(X) —
w(Vy X).

Next, differentiating the first equation of (2.5) covariantly and mak-
ing use of (2.2), (2.4), (2.5), (2.23) and (2.24), we have

VyU; = r(Y)V§ — q(Y)Wg + @AY — Ap.eY + UV#&
(V4 PE)E = r(¥)Pa — g(Y)Put — u(Ae¥) + h(Y¥, Ue),

where (Vs Pr)¢ is defined by (V¢ Pr)¢ = Vi (Pr€) ~ Pr(V$E€).
Similarly, from the other equations of (2.5), we have

VyVe = —T(Y)Ug + p(Y)Wg +YAY — ApeY + VV#@
(Ve Po)E = —r(Y) Pr& + p(Y) Pué — v(AgY) + h(Y, V),

(2.28)

(2.29)

VyWe = q(Y)Ug - p(Y)va + 0A§Y — ApyeY + WV#&
(V¥ Pr)é = o(Y)Pré — p(Y)Pot — w(AcY) + h(Y, W),

where (Vi Pg)€ = Vi (Pg) — Pe(Vy€) and (Vy Py)¢ = Vi (Pué) —
pa(VyE).

(2.30)

3. Quaternionically holomorphic first normal space

Let No(z) := {¢ € T,M* | A; = 0}. The first normal space Ny(z)
is defined to be the orthogonal complement to No(z) in T,M1. We
put

Ho(w) = No(:r) N FN()(.’I)) N GNO($) N HN()(:U)

Then Hy(z) is the maximal quaternionically invariant(or briefly Q-
invariant) subspace of Ny(x), that is,

FHo(z) C Ho(z), GHo(z) C Ho(z), HHo(x) C Ho(z).
Since F', G and H are isomorphisms, it is clear that
FHo(.'L') = H()(.T), GHo(.T) = Ho(w), HHo(x) = Ho(l')

Taking account of (2.5), we can easily verify
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LEMMA 3.1. For any € € Hy(z), we have

A§=0 and U§=V§=W£=0.

DEFINITION. The quaternionically holomorphic (or Q-holomorphic)

first normal space Hi(z) is the orthogonal complement of Hy(z) in
T, M+,

By definition, it is clear that Ni(z) C H;(x) in T,M~*. Moreover
we have

LEMMA 3.2. If M is a Q-invariant submanifold of a quaternionic
Kahler manifold, then Hi(z) = Ni(z).

Proof. Since Hi(z) and Ni(x) are the orthogonal complements of
Hy(z) and No(z), respectively, we have only to show that Hy(z) =
No(z). Since T, M+ is Q-invariant, it follows from (2.2), (2.23) and
(2.24) that

Vx(F€) =r(X)G¢ — (X)HE + F(Vx€ — AcX)
= —ApeX + Vx(F¢)

and consequently ApeX = FA:X. Similarly we have AgeX = GA:X
and AgeX = HA¢X. Thus, if £ € No(z), then

Ape=0and £ € FNo(z), Age=0and § € GNo(z),
AH{ =0and €€ HNQ((L‘)

This shows that £ € Ny(x) implies £ € Hp(z), which completes the
proof. (]

LEmMMA 3.3. Let H(zx) be a Q-invariant subspace of Ho(x) and
Hs(z) its orthogonal complement in TyM~*. Then T,M & Ha(z) is
a Q-invariant subspace of T, M.
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Proof. We first note that
T.M = T,M @ Hy(z) ® H(z).

Since FH(z) = H(z), for any £ € H(z) there exists n € H(z) such
that Fnp = £ Now let Z € T, M & Ha(z). Then for any ¢ € H(zx),
(FZ,€) = (Z,n) = 0. This means that FZ € T, M & Hy(z). By quite
similar method, we can verify that T, M & Hs(z) is Q-invariant. This
completes the proof. O

Now we recall that an (n+p+3)-dimensional sphere S™"tP*3 of radius
1in a Euclidean (n+ p+4)-space is a principal $3-bundle over QP%E.
Then the Hopf-fibration 7 : S"+P+3 — QP™F® defines a Riemannian
submersion. We construct the S3-bundle over the submanifold M in
such a way that the diagram

71'_1(M) i Sn+p+3(1)

dl |7

M —1 Qp
is commutative (z, i being the isometric immersions). We denote by
X™* the horizontal lift of X € TM and by £* that of the normal vector
field £ € TM+. We put

No(z') = {¢' € Tun™ (M) | A =0}, o’ e (M),

where Afé, denotes the shape operator with respect to the normal vector
field ¢’ to 7~1(M). Then, as shown in [8], we have

(3.1) No(z') ={€" | A¢ =0, Ug = Vg = W, = 0}.
Applying the reduction theorem due to Erbacher [5], we prove

THEOREM 3.4. Let M be an n-dimensional real submanifold of a
real (n + p)-dimensional quaternionic projective space QP " and let
H(z) a Q-invariant subspace of Hy(z). If the orthogonal complement
Hy(x) of H(z) in T,M* is invariant under parallel translation with
respect to the normal connection and q is the constant dimension of H,
then there exists a real (n+q)-dimensional totally geodesic quaternionic

projective subspace QP%Q such that M C QP%Q.
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Proof. Let £ € H(z). Then £ € Hy(z), which and Lemma 3.1 give
A§=0 and U52V5=W§:0

and consequently Az. = 0 because of (3.1). This means that for a
point ' with 7(z') =z

H(z)" = {£" | £ € H(z)} C Ny(').

Hence the orthogonal complement Ho(z)* = {£* | £ € Ha(z)} of H(z)*
in Ty (m~1(M))* is a subspace of Ty (7~1(M))+ such that H(z') C
Hy(z)*. Since Hy(x) is invariant under parallel translation with respect

to the normal connection, so does H(x). This shows that for any
¢ € H(z), Vx¢ € H(z), which and

Vg = (VX&) € H(z)*, Viie* = —(F€)* € H(z)",
Vgt = —(GE)* € H(z)*, V€' = —(HE)* € H(z)"

imply that H(z)* is invariant under parallel translation with respect
to the normal connection V'L of 7~1(M). From the reduction theorem
([5], p. 339), we know that there exists a totally geodesic submanifold
Sn+4+3 such that w1 (M) c §™+9*3, Let U(z') be a neighborhood of
a point z’ with 7(z’) = . Then the tangent space T, (S™+9+3) of the
totally geodesic submanifold at ¢’ € U(z') is

Ty (v~ (M)) & Ha(y)" = (T,M & Ha(y))" & Ty (77 (y)),

where y = 7(y’). Since S™T9t3 is totally geodesic in S™P*3 the
maximal integral submanifold S® of the distribution y’ — T, (7~ 1(y))
is a 3-dimensional great sphere of S"*P¥3, Hence the Hopf-fibration
Sntatd _, QP™%* by S3 is compatible with the Hopf-fibration 7 :
§ntPt3 _, QP™® and the tangent space of QP™F* at z is T,M &
Hy(z). Moreover, by Lemma 3.3, QP%H is Q-invariant in QPn_;te.
This completes the proof. |

For a @-invariant submanifold, by Lemma 3.2 we see that Hy(z) =
No(z) at any x in M. Thus we have
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COROLLARY 3.5. Let M be a real n-dimensional Q-invariant sub-
mapnifold of QP%E. Assume that a Q-invariant subspace of the first
normal space Ni(x) has constant dimension q and is invariant under
parallel translation with respect to the normal connection. Then there
exists a totally geodesic real (n+q)-dimensional quaternionic projective

space QPn—;c'i such that M C QPw.

4. Quaternionic C R-submanifolds

In this section, let M be an n-dimensional real submanifold of a
quaternionic K&hler manifold, If there is a Q-invariant distribution D :
z +— Dy C Ty M such that its complementary orthogonal distribution
DLz D;c'- in TM is anti-quaternionic, that is,

FDL cT.M*, GDfcT.M‘, HD:cT.M*L,

then M is called a quaternionic CR-submanifold ([2,3]). In particular,
if dimD, = 0 for any z in M, the quaternionic CR-submanifold is
called an anti-quaternionic submanifold ([3,10]).

Let M be a quaternionic C R-submanifold of a quaternionic Kahler
manifold M. Then, by definition, the tangent space T, M at z in M is
decomposed as

(4.1) T.M =T, M & FD} & GD} ® HD: & N, M,

where N, M is the orthogonal complement of FD} @ GDL @ HDL in
T M+

LEMMA 4.1. N M is a Q-invariant, that is,

FN,M CcN,M, GN;M CN,M, HN,M C N,M.

Proof. Let X € T,M & FD;; @ GDy & HD} and ¢ € N, M. Since
X is decomposed as

X=X14+Xo+FY1 +GYs+ HY;3
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for some X; € D; and X5,Y1,Ys2,Y3 € 'Di‘, it is clear that

(X,F€> = _<FXa§>
—'<FX17€) - (FX2,§> + <Y1)€> + (1/27§> + <Y37£>
=0.

Similarly we have (X, G¢) = (X, HE) = 0, and consequently
FN,M c N;M, GN,M c N;M, HN;M C N:M.
This completes the proof. d

LEMMA 4.2. Assume that NM is invariant under parallel transla-
tion with respect to the normal connection. Then, for any £ € NM
andn e TML,

AU, =0, AgVy=0, AW,=0.

Proof. By means of Lemma 4.1 and our assumption, it follows that
for any £ € NM

Fé—Ppﬁ, Gt = Pg¢, HE=Py¢, Vxé,
Vi¢ = PpVLe, GV%E=PeVi€E, HViE=PuVxé

are all contained in NM. Differentiating the first three equations of
those covariantly, we have

x(F§)
x(G¢)
x(H¢)

I
<1| <1| <l|

x(Pr€) = _APF§X+V (Pr§),
x(Pg€) = —ApgeX + Vx(Pgt),
x(Pu€) = —ApgeX + Vi (Pub).

(4.2)

<1| <1| <1|

i

Also we have
(4.?1
Vx(F€) = r(X) Pt — a(X)Put — pAcX —u(AeX) + PrVx¢,

Vx(GE) = p(X) Pyt — r(X)Ppt — Y AcX — v(AX) + PaVxE,
Vx(HE) = q(X)Pré — p(X)Pot — 0AcX — w(AeX) + PuVxE.
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We notice that U; = Ve = W = 0 for any { € NM. Consequently
(2.6) implies

u(X), v(X), w(X) € FD* ¢ GD* ¢ HD*

for any X in TM. Comparing the normal parts of (4.2) and (4.3), we
have

’U.(AgX) = 0, ’U(AgX) =0, ’w(AgX) ={.
Thus for any n € TM+

9(AUp, X) =0, g(AVy, X)=0, g(AW,,X)=0

and consequently AU, = AV, = AW, = 0. This completes the
proof. |

THEOREM 4.3. Let M be an n-dimensional anti-quaternionic sub-
manifold of QP%EE. If NM is invariant under parallel translation
with respect to the normal connection, then there exists a real 4n-
dimensional totally geodesic quaternionic projective space QP™ of
QP%E such that M is an anti-quaternionic submanifold of QP™.

Proof. Since M is anti-quaternionic, the tangential parts of (4.3)
vanish identically. Comparing the tangential parts of (4.2) and (4.3),
we have

for all £ in NM. But, in an anti-quaternionic submanifold, Pr, Pg
and Py are all isomorphisms on N M and consequently A¢ = 0 for any
£ in NM. Thus by means of Lemma 4.1 NM C HoM.
Conversely, let £ € Ho(z). Then for any X,Y7,Y2,Ys € T, M, we
have
<§,X+FY1 + GY; +HY3> =90

since Ho(z) is Q-invariant. Thus £ belongs to the orthogonal comple-
ment of T,M & FT,M & GT,M & HT,, M, that is, £ € N, M. Hence
NM = HoM and consequently FT,.M & GT,M & HT,M is the Q-
holomorphic first normal space. Applying Theorem 3.4, we conclude
that there is a real 4n-dimansional totally geodesic quaternionic projec-
tive space QP"™ of QP%H such that M is anti-quaternionic in QP™.0
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In [8] and [11] it was already proved that the normal connection of
7~ (M) in 8™*P*+3 is flat if and only if the following conditions are
satisfied on M:

(2) R-(X,Y)¢=—29(¢X,Y)Pré — 29(¢X,Y)Pc§
(4.4) —29(0X,Y)Py¢,
(b) The structure induced on the normal bundle is parallel
(for the definition, see [11]).
In this sense the normal connection of M in QPn_4tE is said to be lift
flat if the conditions (a) and (b) are valid.

LEMMA 4.4. Let M be a quaternionic C R-submanifold of QP%}Z
with lift flat normal connection. Then A¢A, = A,A; for € € N;M
andn € T, M*.

Proof. Since the normal connection is lift flat, the equation of Ricei
and (4.4) (a) implies
0 =h(AeX,Y) — h(AcY, X) + g(Y, Ug)u(X) — 9(X, Ug)u(Y)
+ (Y, Ve)u(X) — g(X, Ve)o(Y) + g(Y, We)w(X) — g(X, We)w(Y).
In particular, for £ € Ny M, Ug = V; = W, = 0, and consequently
(4.5) h(AeX,Y) = h(AY, X).
Hence, if £ € N;M and 5 € T, M~*, we have
9((AnAe — AcAn)X,Y)
=9(ApAcX,Y) — g(AcAnX,Y)
= g(h(A¢X,Y),n) — g(h(AcY, X),m) =0
because of (4.5). This completes the proof. O

THEOREM 4.5. Assume that the normal connection of a quater-
nionic C R-submanifold M of QPLP3 is lift flat and that N M is invari-
ant under parallel translation with respect to the normal connection.
Then there is a totally geodesic quaternionic projective space QP%‘Z
such that M is a quaternionic CR-submanifold of the quaternionic
projective space.
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Proof. By means of Theorem 4.3, it suffices to show that NM =
HoM. We choose orthonormal normal vector fields &;,...,&p in such
a way that

&,...,4 e FD* oGPt @ HDY, ¢p4a,...,6, € NM

(¢ must be a multiple of three) and denote by A, the shape operator
for £,. Since N M is not only invariant under parallel translation with
respect to the normal connection, but also Q-invariant, it follows that

P

(46) Vg_(é.a = Z SQA(X)g)\a a=q+1,... Py
A=q+1

Fga - PF&a = z§=q+1(PF)a)\€/\’
(47) Géa = PGfa = ZZ))‘:q.l_l(PG)a)\é)\a a=q+ 1, Ry 2
H&a = PH&a = Z§=q+1(PH)aA§)\7

from which we have

Fvg_(é.a = §,#=Q+1 SaA(X)(PF)A;Lgm
(48) GVJX&J = I)’\,“=q+1 sa)\(X)(PG))\pg;n a=4q + 11 SRRy
HVJX&)‘ = z))\,/_l.zq-f-l sa/\(X)(PH))\N§IL7

On the other hand, comparing the tangential parts of (4.2) and (4.3),
and using (4.7), we obtain

PANX = ZZ=q+1(PF)>\uAuXa
(4.9) YAX =30 (Pe)auduX, A>g+1.
0A\X = Zz:q+1(PH)>\#AﬂX7

Substituting AxX for X in (4.9) and summing over A = ¢+ 1,...,p,

we have
P

P
¢ Y AX= Y (PrraArAX =0

A=q+1 Ap=g+1
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because (Pr), is skew-symmetric with respect to A and p, but A A
= A A) by Lemma 4.4. Thus we have

P Y4 p
Y AX ==Y AX+ ) Uuauex)=0.
A=g+1 A=q+1 a=g+1

However, as already shown in the proof of Lemma 4.2, u(4,%X) = 0
and consequently 3-%_ ., Ax®X =0, that is, A\ =0, A > ¢+ 1. Thus
N_.M is a Q-invariant subspace of NgM. Since HgM is maximal, it
follows that N, M C HoM. Let € € HyM and n € FD-®GDL®HD+.
Then there exist Y3, Ys, Y3 € Dt € TM such that

n=FY; +GYs + HY;.
Therefore it is clear that
<§,7I> = _<F§,Yl> - <G€,},2> - (Hf,Yg) =0

since HoM is Q-invariant. This means that £ € N M and consequently
NM = HyM. This completes the proof. a

REMARK. As already shown in the proof of Lemma 4.4, it suffices
to assume only the condition (4.4)(a) instead of the condition “lift
flatness” in order to prove Theorem 4.5.
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