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FLYPES OF CLOSED 3-BRAIDS
IN THE STANDARD CONTACT SPACE

K1 HYyouNnG Ko AND SANG JIN LEE

ABSTRACT. We classify all conjugacy classes of 3-braids that are
related’ by flypes on representatives. Among them we determine
which classes have representatives that admit both (+) and (—)-
flypes as an effort to search for a potential example of a pair of
transversal knots that are topologically isotopic and have the same
Bennequin number but are not transversally isotopic.

1. Introduction

The standard contact structure A on R3 is the field of two-dimension-
al tangent planes determined by the differential 1-form dz + r%df, where
(r,0, z) is the cylindrical coordinate for the 3-space. Then we can con-
sider two special types of knots: Legendrian knots which are everywhere
tangent to the contact planes, and transversal knots which are nowhere
tangent to them. It is natural to classify Legendrian and transversal
knots up to Legendrian and transversal isotopies and compare those
isotopies with the usual topological isotopy.

For Legendrian knots one introduces two integer-valued Legendrian
isotopy invariants. The first measures the rotation of a (oriented) knot
with respect to the contact structure — we call it the Maslov number.
The second one, which we call the Bennequin number, is defined as
the contact self-linking number of the knot. Transversal knots have no
Maslov numbers, but also have Bennequin numbers.

These kinds of knots have become very popular in contact geometry
since the seminal work of Bennequin[1], published in 1983. The aim of
that paper was to prove the existence of contact structures not isomor-
phic to the standard contact structure. It is based on two inequalities
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between the above two invariants and the Euler characteristic of incom-
pressible spanning surfaces. To prove the main inequalities he reduced
them to problems of knots and braids: He proved that any transversal
knot can be deformed through transversal isotopies to a closed braid
representative relative to the z-axis. He then proceeded to study cer-
tain incompressible spanning surfaces which are bounded by these closed
braids, using the foliation on these surface which are induced by the Reeb
foliation.

Since the work of Bennequin, many mathematicians studied the Leg-
endrian and transversal knots in standard or general contact manifolds.
One of the most exciting problems in the theory of transversal (oriented
Legendrian) knots is the following.

QUESTION. Are topologically isotopic transversal (oriented Legen-
drian, respectively) knots with equal Bennequin numbers (Bennequin
and Maslov numbers) transversally (oriented Legendrian) isotopic?

There are many evidences that this question may have affirmative
answer or it is hard to disprove. For examples, see the followings:

THEOREM 1 (Eliashberg [6]). Transversal (oriented Legendrian, res-
pectively) knots with equal Bennequin numbers (Bennequin and Maslov
numbers), which are topologically isotopic to the trivial knot, are transver-
sally (oriented Legendrian) isotopic.

THEOREM 2 (Fuchs-Tabachnikov [7]). Topologically isotopic Legen-
drian knots with equal Bennequin and Maslov numbers can not be dis-
tinguished by finite-order Legendrian knot invariants.

THEOREM 3 (Swiakowski [12]). Two Legendrian knots with generic
nonintersecting fronts are Legendrian isotopic if and only if they have
same Bennequin and Maslov numbers.

The closed braids are closely related to the transversal and Legendrian
knots. And the links with braid index < 3 are classified completely via
closed 3-braid representatives by Birman-Menasco [3] (see Theorem 4)
and the conjugacy problem in the braid groups has algorithmic solutions
[4, 5, 8, 9, 10, 13]. So it is worthwhile to check whether the question is
affirmative or not for the closed 3-braids.

The classical presentation of the 3-braid group Bs is the Artin’s pre-
sentation, {0y,09 | 010907 = 09010,). In this article we use the band
generator presentation of Xu [13], Kang-Ko-Lee {10] and Birman-Ko-Lee
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FIGURE 2. A braid-preserving flype

[4]. So Bs is generated by three cyclically symmetric elementary braids
a) = 01, Gy = 0, a3 = 0} '0201 with the relations a,a3 = asa; = asaz,
that is,

Bs = (a1, a9, a3 | aza; = axa; = a,a3).

DEFINITION. A 3-braid is called flype admissible if it is conjugate to
a word of flype admissible form aala]a§, where p, q, T, € are integers and
€ = *1. It is also called e-flype admissible according to € = 1. For this
braid, the e-flype is defined by

p,.q_r ¢ p e _r ¢
10,0409 — a,0504Q5.

A flype is called effective if it changes the conjugacy class. The e-flype
equivalence is the equivalence relation generated by e-flypes and conju-
gations.

Geometrically, Figure 1 shows the flype operation. For closed 3-braids
in Figure 2 we can perform the flype operation on the left one to get the
right one. This move may or may not change the conjugacy class of the
braids. The following theorem shows that it is the only move necessary
to connect two conjugacy classes of 3-braids representing the same link.

THEOREM 4 (Birman-Menasco [3]). Any link of braid index < 3 ad-
mits a unique conjugacy class of 3-braid representative with the following
exceptions:
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e unknot: it has three conjugacy classes of 3-braid representatives,
a1a3, a1a;" and a7'a;’'.

e (2,k) torus links, k # 1: they have two conjugacy classes of 3-braid
representatives, ata, and a¥ay’.

e special class of links with braid index 3 which have 3-braid repre-
sentatives which admit “braid-preserving flypes”. These links have
at most two conjugacy classes of 3-braid representatives, afajajas
and aja$ala), where p, q, v are distinct integers having absolute

value at least 2 and ¢ = +1.

The conjugacy problem in braid groups is easy for 3-braids. Thus the
answer to the following question will complete the Birman’s classification
in the level of algorithm.

QUESTION A. Classify all flype admissible forms which admit effec-
tive flype.

Closed braids can be considered naturally as transversal links in the
standard contact space [1, Theorem 10] and

(i) two closed braids are transversally isotopic if and only if one can
be transformed to the other by (+)-Markov moves, i.e., W < Wo,
for W € B;

(i) an e-flype can be realized by e-Markov moves and isotopies of closed
braids.

For (ii) see Figure 3 for ¢ = +. In the figure, (a) — (b) (respectively, (c)
— (d)) is a (+)-Markov move which increases (respectively, decreases)
the braid index and (b) — (c) is an isotopy of the closed braid. The
question on the transversal isotopy of links with braid index < 3 can be
restated as follows:

QUESTION B. Is it possible that for two e-flype equivalent 3-braids,
one can be transformed to the other by (—e)-Markov moves and iso-
topies?

We reduce the above question to a weak problem as follows:

QUESTION C. Is it possible that two e-flype equivalent 3-braids are
(—e)-flype equivalent?

The aim of this article is to answer the questions A and C. Our strat-
egy goes as follows. Consider a flype admissible form a{aja]as.
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FIGURE 3.

(1) Find necessary conditions on p, g, so that the flype on ajajajaj
is effective.

(2) Divide the flype admissible forms into some classes and compute
the canonical representatives for the conjugacy classes.

(3) Prove that for all the 3-braids in the list obtained from step (2),
the flype is effective if it satisfies the conditions in step (1). This
step solves the question A.

(4) Find all 3-braids which admit both (+) and (—)-flypes by using the
list of canonical representatives obtained from the step (2). This
step solves the question C.

The main tool in this work is the algorithm on the conjugacy prob-
lem of 3-braids. The conjugacy problem for braid groups was solved
first by Garside [9] in the late sixties. His algorithm was improved by
Thurston and Elrifai-Morton [8]. To get an algorithm appropriate to the
classification theorem of Birman-Menasco (Theorem 4), Xu made a new
presentation of B; and an algorithm for the conjugacy problem for this
group in [13], which was generalized by Kang-Ko-Lee [10] to the 4-braid
group and by Birman-Ko-Lee [4, 5] to the n-braid groups for general n.
We will recall necessary facts in the next section.

We say that a flype admissible form afajaia$ is fasthful if

1. Neither p nor r is equal to 0, €, 2¢ or ¢ + € and p # 7.
2. q has absolute value > 2.
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Now the following theorem is our answer to the question A.

THEOREM 5. Let afalala$ be a flype admissible form. Then the flype
on this form is effective if and only if it is faithful. Moreover in this case,
the closed 3-braid represented by alalala$ is a prime, non-split link with
braid index 3.

The following theorem is our answer to the question C. For a precise
version see Theorem 12.

THEOREM 6. Let W € Bs; be represented by an e-flype admissible
form afala’a. Then it also admits a (—e)-flype admissible form if and
only ifp= —e orr = —e or g = —2e.

We think that the closed 3-braids which do not admit both (+) and
(—)-flypes are potential counterexamples (if there are any) for the ques-
tion about transversal knots that was mentioned at the beginning.

2. Calculations

Before starting discussions, we recall some results on the conjugacy
problem of 3-braids and fix some notational conventions. The conjugacy
problem for 3-braid group is very easy because the number of strings
is too small and so any complicated phenomena can not occur. We
recall the result of Xu [13], which is specific to the 3-braid group. For
the solution of the conjugacy problem for the general braid group see

[4, 5, 10].
We use the indices of ¢; in mod 3. Soa_3 =ay =az =---, a_s =
a; = a4 = -+ and so on. Let o be the fundamental element of By defined

by o = a;+1a;. It has the property aja = aaf,, for any ¢ and 7.

A positive word P = a,, ---ay,, in B; is said to be in nondecreas-
ing order (ND-order) if the array of its subscripts (1, ..., ux) satisfies
Kj+1 = Pj OF pjpn = pj + 1.

THEOREM 7 (Xu). In Bj;, every element W can be expressed uni-
quely in the form o™ P, where P is a positive word in ND-order.

The form o™P in the above theorem is called a canonical form of W.
If a canonical form W = o™P = a™ay, - - - a,, is rewritten in the form

—amob e b
W = a™ay ay, ---ay,,
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where I1,... ,l; are positive integers and the indices (\;,...,\;) are in
strictly increasing order, i.e., A;y; = A; + 1, then it is called the syllable
form of W. The syllable length of W is £,(W) = t, and the ertended
syllable length of W is £,(W) = m +t. The symbol of W is ©{W} =
[m; l,...,1). mis called the power and (ly,...,1;) is called the tail.

Note that a symbol determines the braid up to the meridian conju-
gation equivalence, which is generated by

W = amaf\ll ceaf = o Was= oag - LA

The summit set of a 3-braid W is defined as the set of all conjugates
W' with maximal power. It is clear by definition that conjugate braids
have the same summit set. Any symbol of an element in the summit
set of W will be called a summit symbol of W. We define the extended
syllable length and power of a summit symbol of W by minimal estended
syllable length (MESL) and the summit power of W. Clearly, the MESL
and the summit power are invariants of conjugacy classes.

Xu gives an algorithm to find a representative symbol among all the
symbols of the 3-braids in the summit set. We summarize her algorithm.

1. Define the representative symbol X*[W] of a 3-braid W as the sym-
bol of a braid in the summit set whose syllable length is minimal.
Then it is characterized by the following property:

(a) £, =0 (mod 3) or
(b) tailis () or (1) or
(c) £, =1 (mod 3) and 4, =1 (i.e., T*[W] = [3k; £)).

2. The representative symbol is unique up to cyclic moves on the
tails of a given representative symbol. (In fact Xu defined the
representative symbol as the summit symbol whose tail is minimal
in the lexicographic order.)

3. The representative symbol can be obtained from any symbol

[m; ll,... ,lt]

by the following two moves.
(I) if 4, =1 (mod 3) and ¢, > 1, then

[m; ll,... 7lt] i) [m, 12,... ,lt+l1].

In this case, the result is the representative symbol of the con-
jugacy class of W. Thus the MESL of W is ¢, ~1=m+t— 1.
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(IT) if £, = 2 (mod 3) and the tail is not (1), then

[m, ll,... ,lt]g)[m—l»l,ll—l, ,lt_l,lt—l].

(ift =1and [; > 2, then [m; L) = m+1;1 -2

Here we note that the conjugacy problem for B,, n > 4 is not so easy
as for Bs.

1. The word problem is solved by obtaining the canonical form for a
given word. For 3-braids, it is just the positive word in ND-order.
But for B,, n > 4, the situation is somewhat complicated and so
one considers the canonical factors which are positive subwords of
the so-called fundamental word. See [4, 5, 8, 10]. The canonical
form in this case is the left canonical form, a product of canonical
factors satisfying the left-weightedness condition.

2. The conjugacy problem for B, is solved by computing the sum-
mit set which consists of all the canonical forms of the conjugate
braids with maximal power. For Bj this set is represented by the
representative symbol which can be computed easily. But for gen-
eral braid groups, the conjugacy class can not be represented by
a single symbol, even though one reduces the summit set to the
so-called super summit set, which requires another condition that
the number of factors is minimized.

3. The notions such as syllable length, minimal extended syllable
length and representative symbol can not be generalized to the
general braid groups.

We prove the next lemma since it can be used to simplify the proof
of theorem 5.

LEMMA 8. Let W = o™a’ ---a¥ be a canonical form with t > 1 and
l; > 1 for some i. Then W~ has MESL —m — t.

Proof. Note that

=l (a_

-

1 _ -1 -1 — 2 -2
=0 G2 ai+1—ai+3a .

1

-1
* ai-f;cla : \
®q; aiy1) - (a ai+lz = itz Gigp+1 Q7

— "

k k
e the syllable length is just b —a + 1, where a (respectively, b) is the
first (respectively, last) index of the canonical form.
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—lt-1

So a;*a; 't -+ a7™ has syllable length l; +--- +1; — (¢t — 1) by the
above observations. Clearly the power is —(l; + -+ -+ {;). Thus

-1 __ ~lg —li-1 ool —m
W™ =a;%a,_7 -0, '

has syllable length £, = I +---I; — (t — 1) and power —(m + 11 +---1;).
Thus W~ has extended syllable length #, = —m — ¢ + 1. Since W has
syllable length t > 1, m 4+t = 0 (mod 3) and so £, = 1 (mod 3). Since
I; > 1 for some i, £, > 1. By 3.(I) of the results of Xu, W~ has MESL
-m —t. 0O

In characterizing effective flype-admissible forms, we abbreviate k suc-
cessive appearances of 1 in the symbols by 1¥. For example, we express
[0;p,1,1,1,1,9] as [0; p, 1%, g]. We denote Wy ~ W, if W; and W, are
conjugate.

The following proposition proves the ‘only if’ part of Theorem 5.

PROPOSITION 9. If a flype admissible form afala}a$ is not faithful,
the flype on this form is not effective.

Proof. Before starting the proof we note that:

e a;,ai_; = a,,a; for e = +1.

e For any word W on ay, as, W{(ay, az) ~ W(az, a;) since Ag;A™! =

ay and AayA~! = q;, where A = a,a20;.

e aSasal = abaSa$ for € = £1 and p any integer as we can observe

easily from braid diagrams.

We prove the proposition case by case.

(1) p = r: (obvious)

(2) p=0or r =0: (obvious)

(3) p =€corr =e€ Assume 7 = e. The case p = ¢ is similar to
this case. Let W = afalaa and W' be the result of flype. Then
W = alalaSas = alaSasal ~ af™"" a5 and W' = afa§aial = afalasal ~
al*9*a5. Thus W and W' are conjugate. We also note that in this case
the braid is reducible.

(4) p = 2¢ or r = 2e: Assume p = 2¢ and € = 1. The other cases are
similar. Let W = a?a%aja, and W’ be the result of flype.

+1a3a1.

W = dlalala, ~ ala](aza1)a; = alajayaza; = ala]
W' = dlalala, ~ alalaqd] = adaiajas
9, aT — 491 T — 91 T
Aya1090102 = Gy (azal)azalaQ = Q9 0G3A20,0102

-1
= ad lazabtlara; ~ adazabtla; = ada M aza;
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— —- )~ A

FIGURE 4. The closure of afa; 'ala,

Thus W and W' are conjugate.
5) p=g+ecorr=qg+e Let p=qg+e Let W = alalalas and
W' = ajaldla§ be the result of flype. Then

— qgte q r ¢ q Q.7 € €

W = af ‘ajala; ~ ajaz(ajasa))
! P r.q .49 _¢€_¢€ q.q € _€_ T q._q € _ €T
W' = alajaiaia; ~ ajai(ajasay) ~ aja3(asaiay)

Since ajasa§ = a$aia}, W and W' are conjugate. Thus the flype does
not change the conjugacy class. Similar for r = ¢ + e.

(6) ¢ = 0: {obvious)

(7) ¢ = e (obvious)

(8) ¢ = —e: alalala$ represents a composite link (see Figure 4.) and
so the flype is not effective since any composite link admit an unique
closed 3-braid representative by Morton [11]. O

We divide flype admissible forms into sixteen (possibly not disjoint)
types according to the positive-or-negativeness of the four integers p, g,
r and € in the flype admissible form. We divide again these sixteen types
into five types, say type I, II, III, IV and V, according to the number of
negative integers in p, ¢, r and € in the flype-admissible form, that is,
type k means that it has a flype-admissible form in which (k — 1) of p,
¢, r and € are negative.

From now on p, g, r denote positive integers. Followings are all flype
admissible forms.

type I: alalala,

type II: diadalas!, ala;%a}a,, afala;"a,, a;Pada]al

type IIL: afa;%%a;", a;Padar"a,, alada;"a; ", arPadala;?,

aay%a7"ay, a;%a;"ala,

type IV: afa;%;"a;", a7Pa;%a;", a;Pada; 05, a;Paz%a"a,

type V: a;%a;%;"a;"
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We also assume that they are all faithful.

ProPOSITION 10. (1) The representative symbols and the results
of flypes of the faithful flype admissible forms of type I, II, IIT are
as in the table 1.
(2) The MESL of flype-admissible 3-braids of type I II, III, IV and
V are 6, 3, 0, —3 and —6, respectively. Thus the flype-admissible
3-braids of different types can not be conjugate.

Word [ representative symbol | result of flype ]
type I
[afalala) [[Bip—2,9—1,7—2] [B;r—2,g—1,p-2| B
type 11
ajadala;’ [[0;p,g—1,7] 0:7,q—1,p]
dday%aa, [[2—¢;p—1,19""r—1] 2—¢q;r—1,19"1 p—1]
aI{agal_r% i—-r;p—1,q,17] 1—7r;q,p—1,17]
a;fafala, [[1-p;qr—117] 1-p;r—1,q17
type I11

al_pagal_raQ [—(p+r); 171 g+ 1,171 2] [—(p+71); 171 g+1,17719]
oyl ay [[L—(g+r);p,19 2210 Y [ —(g+7);p 1"}, 2,197%]
a,7a, ey | (L= (p+q);n1P 52,1972 |[1—(p+4q); 7, 197% 2,077

aa, e, | g+ 0; 7+ Lp+ L1 [ [—(g+1);p+1,r+1,1971]
dadal ey’ |[-rip+1,q,177) [-r; ¢p+1,1777
a;Padatay! [[-p; ¢, r + 11,1777 [-p; r+1,q,1772

TABLE 1.

Proof. We denote k successively 1ncreasmg generators as aQy41
ai+x-1 and k occurrence of same word as (a5t) -+ (a5!) by

a- - apr and  (ogl) (0.
k k
We will prove (1) by computing the representative symbols of all the

eleven types of flype admissible forms. It w111 be helpful to keep in mind
that a;0™ = a™aj1m = " Qj1m-3 and a; " = a” 'a;11. Thus

a7 = (07la) - (07 aig) = Giny Qs 07

-

—

k k
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e APl T
Case 1: ajajaia,.

alafaiay ~ apafada] = (aga;)dd  ad Naza1)al ™ = o2l ad el
= [2;p-1,¢—1,7r—1] EL¢ B;p—2,g—1,7—2]
Since ajalala, is faithful, p,r > 3 and ¢ > 2. So its representative
symbol is [3; p— 2,¢ — 1,7 — 2} and the MESL is 6.
1

o Pl T o=
Case 2: alajalas".

p.q.r. —1 __ p,q—1 r—1¢ -1 . p,q-1_ r—1_ -1
ajajala;” = afa (aza1)a]”'(a 'as) = dfad aa] o a3

= dfay ') =[0; p,q —1,7]

So its representative symbol is [0; p,¢ — 1, 7] and the MESL is 3.
Case 8: d¥a,a%a,.

PG T _ P ~q, T — P r -
@105 °a1a; = ajmay---a,0 ajas = aj 410y -+ - g Ay, A0 ]
. S 4

q q
= [-¢;p+1,17 11 B 1 —¢; p, 1970, 7]

A 2-¢;p-1,19Yr 1]

So its representative symbol is [2 — ¢; p — 1,197!,r — 1] and the MESL
is 3.

P4
Case 4: djajai"a,.
P lo—Tn — oPgd —r o P -r
10900 Q2 = Q109Q3°*Qry2Q Q2 = Q10503 " " Ar42 Apry2Q
—_———— N— e’
T

r
= [——r;p’q’]‘T‘HQ]I—I)[l—T;p—l,q,lr]

So its representative symbol is [ —7; p — 1,¢,17] and the MESL is 3.



Case 5: a;Palala,.

—P 49T —
al azalaz —_
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—-p q—1 r—1
azs - Gprp @ Pag  (agzay)al ap
————

P

g-1_r-1 1-
304" Qpy2 Qpioly  Qpy1l 7
e’

i 1 1

q - -
304" " " Gpi1 Oy o0y 30p4aC "
.

p—-1

[l_pa ]-p_laq’T—]-)l]i)[l—p;Q7T'—1’1p]

So its representative symbol is [1 — p; ¢,7 — 1,1?] and the MESL is 3.

Case 6: a;¥ala;"a,.

Pl Tq, =
a; ay0] ay =

A3a4 *** App2 & pClZ A3Qq4 """ Ar42Q Q2
N, e’ N e’
P T
q ~(p+r
113(14 T ap+gap+2 f"p-i—3 T ap+r+%ap+r+2a (p+r)

g T~
P T
q+1 2 —(p+r
304 """ Op+1Gpry Ap+3 " * " Optr+1 Opirip@® ®+7)
~ ~—

p—-1 r—1
[-(p+7r); 177 1q+1,1771,2]

So its representative symbol is [—(p + 7); 177}, ¢ + 1,17%,2] and the

MESL is 0.
. P =G, =T
Case 7: alay%ai"a,.
dfay%aiTa; = dlajar---agaagarar a1 Ay
~ 7 ~ -~ -
q T
—_ p —{(g+r
= 010102 0qQqQq 41 °* * Qgtr—1 Qgyri20 (atr)
e ~— z
q r
— p+1 2 2 —(q+r
= 01 0203 Qg1 Qg Qq+10¢+2 " " " Qg+r-2 Qgyr1 ¥ ()
q—2 r—2
_ . -2 r—2
- [_(q+’r)’p+1’1q 7271 72]
17 —2 -1
. q T
- [1—(q+7"),p,1 ,211 ]

So its representative symbol is [l — (q+7) ; p,1972,2,17"!] and the MESL

15 0.
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Case 8: aj’a; ala,.

a;fay%aja; = a3y ap+%a'p aaz - aga“"azag

p q
- . T eto
= Q304042 Op+10p42 * " Optg Opyg+19p+g+2

P q
= [-(p+4q); 1", 191 B [1 - (p+q); r,1771,2,1977]

So its representative symbol is [1—(p+q) ; 7,177, 2,177%] and the MESL
is 0. ‘

e qP a9, a1
Case 9: dlay%aja; .

afa;%%a;t = dfajay---a,a7 % (o ag)
N ——’

1 —
= a’l)+ a2 .« aq a;iia (q+1)
s

g—1

= [-(¢g+1);p+1,19 r+1]
So its representative symbol is [-(¢+1); p+1,197!, r+1] and the MESL
is 0.
Case 10: afa%ai"a;".

dPadar a5’ = dladal"(axa1) 7t = afadasas - arp 0t T
e —
r—1

= [-r;pg " D [-r;p+ 16,177
So.its representative symbol is [-r; p + 1,q,177?] and the MESL is 0.
Case 11: a;"a%aja;’.
a;Paldla;! = asas---apr2 0 Pad (asai)al o a)
P
= 304 pr20d500,5077

P
= [-p; "7, q,7]
= [-p; 1P qr+1]=[-p; ¢,r + 1,177
Thus it has the summit symbol [—p; ¢, + 1,17~2] and MESL is 0.
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Now the above eleven cases prove (1). It is easy to check that the
result of flypes are as in the table 1.

By (1) the MESL of type I, II and III are 6, 3 and O respectively.
Note that if W is of type IV (respectively, V), then W1 is of type II
(respectively I) and so has the MESL 3 (respectively 6). By Lemma 8,
W has MESL —3 (respectively —6). Since the MESL is an invariant of
conjugacy relation, any two word of different types can not be conjugate.

O

The following proposition is the ‘if’ part of Theorem 5.

ProprosiTION 11. The flype on a faithful flype admissible form is
effective.

Proof. Note that the flype reverses the cyclic order of the tail. The
faithfulness of the flype admissible form of type I, II, III guarantees that
the cyclic order of the tail is different from its reverse. (It is easy to
check.) For the forms of type IV and V note that the e-flype on W =
alalaias is just the inverse of the (~¢)-flype on W= ~ a;"a;%;%a; .
Thus all flypes are effective. a

Proof of Theorem 5. Proposition 9 and Proposition 11 proves the
if and only if’. It remains to show that if a 3-braid is represented by a
faithful lype admissible form, it is neither composite, split nor reducible.
If it is a composite (respectively split) link, it has unique closed 3-braid
representative by Morton [11] (respectively, Birman-Menasco [2]) so that
any flype cannot be effective.

Assume that W € Bj represents a reducible braid, i.e., a (2, k) torus
link k& # 1. By the classification theorem of Birman-Menasco (Theo-
rem 4), W is conjugate to ai*ai’ for some integer k > 2. Note that

abay = [0; k1) B k-1 582, k-3,
afa;' = dbaja™t =[-1; k+1],

a7*ay ~ aa7* = arasay - -ap07F = [~k 151

k

ko - _ - 1 I _

atfa;! = al F(aga) t=a3- a7 = [k 1 S 1 -k 1579
k-1
In each case the tail of the representative symbol of W has tail with

syllable length 1 or is just a sequence of 1’s so that it cannot be a
representative symbol of a faithful flype admissible form. O
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[ word / result of flype | representative symbols ]
Was(-’ﬂ#y 22) [Oa z,y, 1]
= a¥afa; = [0; z,y,1]
a;%djaz(z >3, y>2) | [~z;y+1,2,1577
= aja; a3 = [-z; 2,y + 1,172
dlay%a3(z >3, y>2) | [-z;2,y+ 1,157
= a] "ada3 = [~z;y+1,2,1°7%
a;%a %a; (z#£y>2) |[~(z+y+1);3,172,2,1972
= a;%a%a;! = [—(z+y+1);3,1¥72 2,122
TABLE 2.

The following theorem, which is a refined version of Theorem 6, is our
answer to the question C.

THEOREM 12. If W € Bj is both (+) and (—)-flype admissible, then
W has MESL 3, 0 or —3 and in each case it has the property described
below (see the table 2):

1. If W has MESL 3, then it is conjugate to afa3as (v # y > 2) with
representative symbol [0; z,y,1]. W can be written as any flype
admissible form with MESL 3 in the table 1 and the result of any
flype is conjugate to alaSas with representative symbol [0; y, z,1];

2. If W has MESL 0, then it is conjugate to Wy = a7"ajas or Wy =
a¥ay%as3 (z > 3,y > 2). Their representative symbols are [~z ; y +
1,2,1°7% and [-z; 2,y + 1,1°7?] respectively. W can be written
as any flype admissible form with MESL 0 in the table 1 and the
result of any flype on W, (respectively W,) is conjugate to W,
(respectively W1 ).

3. If W has MESL —3, then it is conjugate to a;%a;%a;" (z £y > 2)
with representative symbol [—(z +y+1); 3,1772,2,1¥7%. W can
be written as any flype admissible form with MESL —3 which is
the inverse of a flype admissible form in the table 1 with MESL 3
and the result of any flype is a; a7 %a3 " with representative symbol
[~(z+y+1);3,192,2,15-2].

Moreover, if W € Bj is represented by an e-flype admissible form
afadalas, then it also admits an (—¢)-flype admissible form if and only

ifp=—¢,r=—corq=—2e.
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Proof. If W is both (+) and (-)-flype admissible, its MESL cannot
be 6 or —6 by Proposition 10. Thus W has MESL 3, 0 or —3

Assume that W has MESL 3. Since it is (—)-flype admissible, it has
summit power 0. Since W is also (+)-flype admissible, it is conjugate to
one of afa;%a%a,, afalai"a, or ajPalala,.

1. If W is conjugate to afa;%aja, which has representative symbol
[2—¢; r—1,p—1,197}], then ¢ = 2 and W is conjugate to afa; *a}a,
with representative symbol [0; 7 — 1,p — 1,1]. Since the flype is
faithful p # r > 3. Thus it is conjugate to the word a¥ala; with
zr=r—landy=p-—1.

2. If W is conjugate to ajala;"a, which has representative symbol
[l—r;p—1,q,1], then 7 = 1 and W is conjugate to afalai'a,
with representative symbol [0; p—1, ¢, 1]. Since the flype is faithful,
p #g+1and p > 3. Thus it is conjugate to the word a¥ada; with
r=p-—1land y=gq.

3. If W is conjugate to a;”adala, which has representative symbol
[1—p;qr—1,17], then p = 1 and W is conjugate to a; alaja,
with representative symbol [0; ¢,7—1, 1]. Since the flype is faithful,
r #p+1and r > 3. Thus it is conjugate to afalasz with z = ¢
andy=r-1.

From the above observations, W is conjugate to aalas; as in the
’ jug 142

statement. It is easy to see that W has the following flype admissible
forms

1 y+1 z+1 Yy -1

T, Y y 2 z — z -1
al aza3 o~ al a2a1 a2 ~ a1a2 alaz ~ a1a2 al

- 1 1z - -
f“az 2a!1l+ a; ~ a¥+ azay 1az ~ ay lalzlafﬂaz

ay
~ a

and any flype on one of those forms transforms W to a¥a3as.

Note that both (+) and (—)-flype admissible forms with MESL 3 have
the property that (i) the summit power is 0 and (ii) there is exactly one
‘1’ in the tail. Thus if an e-flype admissible form with MESL 3 admits
also a (—e)-flype admissible form, it should satisfy the conditions on the
exponents as in the table 3, which proves the ‘moreover’ part.

Now assume that W has MESL —3. Since W~! has MESL 3 and
both (+) and (—)-flype are admissible, W~! is conjugate to a{aSa3 (z #
y > 2). So W is conjugate to a;'a;%a;¥ ~ a;%a;Ya;! and any flype
on W results in a;¥a;®a3'. Then W has representative symbol [~(z +
y+1);3,1772,2,1¥?] and the result of any flype on W is [~(z + y +
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[ form [ representative symbol | condition on exponents |
dlafata;’ [[0;p,q—1,7] p=1l,g=2orr=1
aPa,%fa, [[2—q;p—- 1,19 r—1]1g=2
afadai"a, [1—7r;p-1,¢,1"] r=1
ayPadala, | [1 —p; g,m —1,17] p=1

TABLE 3.

1); 3,1¥72,2,1°?] since

y, -1

a;' ~ a8y a0 T agay Ay aYaya!
N e’ [ . S

a; oy

z Yy

—_ :z:+y+1)
- a a A a al a R a — a a (
G162 ¢ Wzlbz41 z+y—1 bz+y+2

~

x y
= [—(z4+y+1);1°7"2, 1v71, 2]
[~(z+y+1);3,1°7%,2,1*7]
Note that the ‘moveover’ part of the theorem follows from the condi-
tion on the exponents of the flype admissible form case of MESL 3.

Assume that W has MESL 0. First we show that W) = a; "ajas (re-
spectively, W, = aYa;“a3) has representative symbol [—z; y+1,2,1577
(respectively, [~z ; 2,y +1,1°7%)).

Wi, = a;%ddas = a3a4- - azi2 a "aja;
Sl g
T
= 304 OQgy2 051902430
e —
x
[~z; 27y + 1,1] 5 (-2 1%y + 1,2
= [-z;y+1,2,1777
Wo = dlaag---a;0 “a3 = aj @102 - g Qz0

z

T T

= [-z;y+1, 1°722) = [-=z; 2,y + 1, 1“"2]

Note that the tail of any (—)-flype admissible forms with MESL 0 has
exactly one series of consecutive 1’s. Since W is also (+)-flype admissi-
ble, it is conjugate to one of a;”aja;"a,, afaz'a;"a, and a;"ay'ala,.
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1. If W is conjugate to a;”afa;"a, which has representative symbol
(—(p+7); 171 g+ 1,112, thenr=1orp=1.

If r =1, then W is conjugate to a;Paja; 'a, with representative
symbol [—(p + 1); ¢ + 1,2,177}] (p,q > 2) which is just W; =
a;"ajas withz =p+1and y =gq.

If p =1, then W is conjugate to a7 'aja;"a, with representative
symbol [—(r+1); g+1,1",2] = [-(r+1); 2,g+1,17"] (¢,7 > 2)
which is just W, = aja;%a3 withz =7+ 1 and y = ¢.

2. If W is conjugate to afa; a7 a, which has representative symbol
1—(g+7);p,1922,1""}], then r =1 or ¢ = 2.

If ¢ = 2, then W is conjugate to a}a;a;"a, with representative
symbol [—(r +1);p,2,1"}] (p > 3 and r > 2) which is just W;
withz=r+landy=p—1.

If r =1, then W is conjugate to afa;%a;'a, with representative
symbol [—¢; p,1972,2] = [—-¢; 2,p,197%] (p,q > 3) which is just
Wy, withz=qgqand y=p— 1.

3. If W is conjugate to a;”a;%aja, which has representative symbol
1-—(p+q);r1P71,2,19% thenp=1org=2.

If p=1, then W is conjugate to a; 'a;%a}a, with representative
symbol [—q; r,2,197%] (g,7 > 3) which is just W, with z = ¢ and
y=r—1.

If ¢ = 2, then W is conjugate to a;”a;%a}a, with representative
symbol [~(p +1); 2,7,177Y] (p > 2 and r > 3) which is just W,
withz=p+landy=r-1.

From the above observations, W is conjugate to W; = a7%adas or
W, = a{a; a3 as in the statement. It is easy to see that W, and W3 has
all the flype admissible forms with MESL 0 in the table 1 and any flype
on one of those forms transforms W, (respectively W,) to W, (respec-
tively W).

Note that both (+) and (—)-flype admissible forms with MESL 0 have
the property that (i) there is exactly one ‘2’ in the tail and (ii) there
is exactly one series of consecutive 1’s in the tail. Thus if an e-flype
admissible form with MESL 0 admits also a (—¢)-flype admissible form,
it should satisfy the conditions on the exponents as in the table 4, which
proves the ‘moreover’ part. O
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[ form [ representative symbol [ condition on exponents |
a;PalalTay [[=(p+7); 1P 1 q+1,1" 12 [p=lorr =1
abay’ar"ay | [1-(g+7); p, 192211 {g=2o0rr=1
a;Paz%dla, |1 (p+9); 7, 1774,2, 1972 [p=1lorg=2

Pay%fa; [ [~(g+1);r+1L,p+ 1,197 [p=lorr=1
alada;a; [ [-r;p+1,q,17"7] p=lorqg=2
a;Padalay | [-p; ¢r +1,1777 q=2orr=1
TABLE 4.
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