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THE DIMENSION OF
THE RECTANGULAR PRODUCT OF LATTICES

DEOK Rak BAE

ABSTRACT. In this paper, we determine the dimension of the rect-
angular product of certain finite lattices. In fact, if L; and L,
be finite lattices which satisfy the some conditions, then we have
dim(Ly0Lp) = dim(L,) + dim(L,) — 1.

1. Introduction

We define an ordered set P to be a pair (P, R), where P is a nonempty
set and R is an order-relation on P. An order R on a set is called an
extension of another order S on the same set if S C R. For a,b € P,
we usually write a < b for (a,b) € R and also a < b when a < b and
a # b. For elements a > b in an ordered set P, we write a > bor b < a
(a covers bor b is covered by a) if @ > ¢ > b implies a = ¢ for every
element c of P. A linear extension of an ordered set P is a linear order
E:zy <z <+ < z, containing the order of P. E. Szpilarjn [10]
shows that any order has a linear extension. It then follows that the
intersection of all linear extensions of a partial order is the partial order
itself. B. Dushnik and E. Miller [3] later defined the dimension of an
ordered set P, denoted by dim(P), to be the minimum cardinality of
a family of its linear extensions whose intersection is the order itself.
The following alternative definition is often credited to O. Ore [7], but
appeared earlier in Hiraguchi [4]: The dimension of an ordered set P is
the minimum size of a family of chains whose direct product embedded
P. From this we can easily see that, for P and @ be arbitrary finite
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ordered sets,
max{dim(P),dim(Q)} < dim(P x Q) < dim(P) + dim(Q).

Then we know that the dimension of the product turns out to be always
close to the upper bound. W. T. Trotter [11] obtained the following
nontrivial result: For positive integers n > 3, then

dim(S, x S,) = 2n — 2,

where S, is the so-called n-dimensional standard ordered set. C. Lin [6]
obtained the following nontrivial result: For positive integers m,n > 3,
then

dim(S,, x Sp) =m+n—2.

A lattice is called bounded if it has both the least element 0 and the
greatest element 1. M. K. Bennett [2] defined the rectangular product of
two bounded lattices L; and Ly, denoted by L,[1Ls, to be the set

{(z,y) | (z,y) € Ly x Ly with = # 0 and y # 0} U {(0,0)}

with the order induced from the direct product L, X Lo, which is also a
bounded lattice.

Let J(L) be the set of all join-irreducible elements of the finite lattice
L(a € J(L) iff a = \/ S implies a € §). The set M(L) of all meet-
irreducible elements is defined dually. An atom is any element which
covers the least element and a dual atom is any element which is covered
by the greatest element. Let us denote by A(L) and DA(L) the sets
of all atoms and dual atoms of L, respectively. We shall compute the
dimension of the rectangular product of the certain finite lattices. To
do this we need a concept introduced by R. Wille [12]. Let G and M be
the sets and let I be a binary relation between G and M. We defined
a context as a triple (G, M, I) and we define a concept of the context
(G, M, I), which is a pair (A, B) with the following properties:

ACG,BCM, A=Band A=PB

where A’ = {m € M | gIm Vg € A} and B' = {g € G | gIm Vm € B}.
Put

B(G,M,I)={(A,B)|ACG,BC M}
with the order relation in B(G, M, I) as follows:

(A1, By) £ (A2, By) & A; C As.
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Then (B(G, M, I),<) is a complete lattice, which is called the concept
lattice of (G, M, I). A relation F C G x M is called a Ferrers relation
if g1F'm, and g;F'my implies g,Fmy or goFm, for all 91,92 € G and
mq,my € M. The Ferrers dimension of a context (G, M, I), denoted by
fdim(G, M, I), is defined to be the smallest number of Ferrers relations
Fy, B, -+, F, with I =) F;. Observe that the complement of a Ferrers
relation F is again a Ferrers relation in G x M — I. Therefore, one can
alternatively define fdim(G, M, I) as the minimum number of Ferrers
relations Fi, Fy, - -+ , F, with F; C GxM —I such that Gx M —1 = UFE.
Let L be arbitrary finite lattice. Then it is known that (L, L, <) and
(J(L), M(L), < yryxm(r)) are contexts and that

We assume throughout in this paper as follows: F is a Ferrers relation

in J(L) x M(L) is the same meaning as F is a Ferrers relation in J(L) x
M(L) — I for any lattice L.

Our main result in this paper is the following.

THEOREM. Let L, and L, be finite lattices with dim(L;) = s and
dim(L) = t. Suppose that there are Ferrers relations Fj(1 < i < s) and
Gj(1 < j <t) such that U;_, F; = J(L1) x M(Ly) — Iy and U}, G; =
Uizi ¢(Fy) = J(Ly) or Ui, ¢(G;) = J(Ls), then we have

2. Preliminaries

To prove the main theorem we need the following lemmas.

LEMMA 1. Let L, and Ly be finite lattices with J(L;) = A(L;) and
M(L;) = DA(L;) for i = 1,2. Then we have
J(LIDLQ) = A(L1DL2) = A(Ll) X A(Lz),
An incomparable pair (a,b) in an ordered set P is called a critical

pair if £ < o implies z < b and z > b implies z > a, then Crit(P)
denotes the set of all critical pairs in P and Crit(y) denotes the set
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of all elements z € P with (z,y) € Crit(P). For A C P, let A* =
{zx € P| (Va € A) a <z}, A’—{xeP|(‘v’a€A)a>x}and
DM(P)={AC P| A¥ = A}. Then (DM (P),C) is a complete lattice,
known as the Dedekind-MacNeille completion of P.

LEMMA 2. For any two elements a and b of a finite lattice L, (a,b)
is a critical pair of L if and only if a A b is a unique dual cover of a and
a V b is a unique cover of b.

Proof. Let (a,b) be a critical pair of a lattice L. If £ < a in L, then
z<binLandsoz<aAbin L. Hence a A b is a unique dual cover of
a in L. By duality, there is a unique element a V b in L such that aV b
is covers b in L. Conversely, if z < ain L, then z < a Abin L and so
z<aAb<binL Hfy>binL,theny>aVb>ain L Hencey>a
in L. Thus (a,b) is a critical pair of L. O

A family R = {E, E»,---, E;} of linear extensions of an ordered
set (P, <) is called a realizer of P (also, we say that R realizes P) if

(P.<) =i B

LEMMA 3. (8] Let P be an ordered set and let R be the family of
linear extensions of P. Then the following statements are equwa]ent

(1) R is a realizer of P.
(2) For all critical pair (z,y) of P, there is a linear extension E € R
such that y < x in E.

By Lemma 2, for any finite lattice L, we have Crit(L) C J(L)x M(L).
In particular, for any two finite complemented modular lattices L, and
L,, it is known that

J(L;) = A(L;) and M(L;) = DA(L;)
and hence we have the following properties:

where Z(L;) is the set of all incomparable pairs in L; for i = 1,2. Now,
by Lemma 1 and Lemma 2, we have the following lemma.

LEMMA 4. Let Ly and L, be finite lattices with J(L;) = A(L;) an
M(L;) = DA(L;) for all i = 1,2. Then we have

Crit(L18L;) = {((a,c),(b,1)) | (a,b) € Crit (Ly) and c € A(Ls)} U
{((a,c),(1,d)) | a € A(Ly) and (c,d) € Crit (Ls)}.
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By Lemma 4, we have
Crit(b, 1) = Crit(b) x A(Ls) and Crit(1,d) = A(L;) x Crit(d).
Furthermore, we have
Crit(b, 1) N Crit(1, d) = Crit(b) x Crit(d).

For any two subordered sets A and B of the finite lattice L, we define
A< Bifa <bforalac Aandbe B. Suppose that J(L) =
{a1,09,++ ,a,} and M(L) = {by,bs,--- ,b}. For each Ferrers relation
F;in J(L) x M(L), we defined the sets ¢(F;), C(F;),r(F;) and R(F}) as
follows: c(F;) is the set of first coordinate of the shortest column of F,
C(F;) is the set of first coordinate of the longest column of F}, r(F;) is
the set of second coordinate of the shortest row of F; and R(F;) is the
set of second coordinate of the longest row of F;. In fact, there are finite
sequences {a;,} in J(L) and {by, } in M(L) such that

Fi(ayn) 2 Fi(ap) 2 - 2 Fi(an,) (#0)and
Fi(bia) 2 Fi(bp) 2--- 2 Fi(bx,) (#0)

where Fi(a) = {b| (a,b) € Fi} and F;(b) = {a | (a,b) € F.}. In this case,
we have

o(F:) = Fibir,), C(F;) = Fi(ba), 7(F:) = Fi(ain,) and R(F;) = Fi(au)-

For any Ferrers relation F; in J(L) x M(L) with Fi(b;) D Fj(bs) 2
«++ 2 Fi(by,), we have a partial linear extension E; from F; as following:

E;: {bu} < Fjy <{bie} < Fj <+ < {big—1y} < Fiyp_1) < {bix;} < Fix,,

where F;, = Fi(b) — Fi(biu—yy) for all u = 1,2,... k; — 1, that is,
a Ferrers relation of ordered set induces a partial linear extension of
the ordered set. If {F}, Fy,---,F;} is a family of Ferrers relations in
J(L) x M(L) with | Jpz F = J(L) x M(L) — I, then every critical pair
of L is reversed in Jg,c E;, that is, R = {Ey, Es, -- - , E,} is a realizer
of L. Further, the Ferrers relations are need not disjoint.

We say that the Ferrers relation F is a saturated in J(L) x M(L) if
there is no Ferrers relation F” in J(L)x M (L) such that F C F’. Let F be
a family of Ferrers relations in J(L) x M (L) and let £ be a subfamily of
F. We say that € is a join-cover (resp, meet-cover) if | Jp . co(E) = J(L)
(resp, Ugee (B) = M(L)).
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LEMMA 5. Let L be a finite lattice with dim(L) = s and let F =
{F1, F,--- ,F,} be a family of Ferrers relations in J(L) x M(L) such
that | J;_, F; = J(L) x M(L) — I. Then we have following properties:

(1) If U;_, e(F;) = J(L), then c(F;) and c(F;) are distinct subsets in
J(L) for all 4, j withi # j.

(2) If \U;_, 7(F;) = M(L), then r(F;) and r(F;) are distinct subsets in
M(L) for all i,j with i # j.

Proof. (1) Suppose not, that is, c¢(F};) = c(F},) for some j and j, with
J # jo- Since |J;_, ¢(F;) = J(L), it follows that |J;_, c(F}) — c(F},) =
J(L). For all 1 <14 < s with 1 # jj, let
E,=FU {(a7b) € Fj, | ac C(FZ)}

Hence each E; is a saturated Ferrers relation in J(L) x M(L) and F;, C
Ui=1iz, Bi and hence € = {Ey,Ey,---,E,} — {E;,} is the family of
Ferrers relations with | Jp., E = J(L) x M(L)—1I and |£| < s—1, which
is a contradiction as dim(L) = s.

(2) Symmetrically, we obtain from (1). O

LEMMA 6. Let L be a finite lattice with dim(L) = s and let F =
{F\,F,--- ,F;} be a family of Ferrers relations in J(L) x M(L) such
that \J;_, F; = J(L) x M(L) — 1. If there is a subfamily £ of F such that
Ugee (E) = J(L) or Ugee 7(E) = M(L), then | F| = | €.

Proof. Let £ be the subfamily of F with | Jgp., ¢(E) = J(L) and let
Foe F— & with Fy #£0. Forall E € £, let

E*=EU{(a,b) € Fy | a € ¢(E)}.

Since ¢(E) x r(F) is a rectangular Ferrers relation in J(L) x M(L)
and |Jgeo ¢(F) = J(L), it follows that E* is also a Ferrers relation in
J(L) x M(L) and Fy C | g E*. Hence we have

U FulUE=J@)xME)-1I
FeF—-(EU{F}) Ee€
and [(F - (EU{FR}))U{E* | E € £}| = |F| — 1, which is a contra-
diction. O

LEMMA 7. Let L be a finite lattice. If there are disjoint families
F1,Fa, - -+ Fy of Ferrers relations in J(L)x M (L) such that Jp. £ c(F) =
J(L)(i=1,2,--- ,w) with F = |J;_, F;, then we have the followings:



The dimension of the rectangular product of lattices 21

(1) Uper F = J(L) x M(L) — I implies that dim(L) < |F|] —w+1
(2) [J(L)x M(L)—=I]—Upesr F # 0 implies that dim(L) < |F|-w+k,
where k = dim([J(L) x M(L) — I| = Upcx F)-

Proof. (1) Note that |F;} > 2foralli =1,2,--- ,w. Now we construct
new Ferrers relations from F as follows:

Fy = {Fy | F, € Fo} with Fj = FU{(a,b) € Fy | a € ¢(F)}
F; ={F; | F; € F3} with F; = F3U {(a,b) € E} | a € c(F3)}

={F, | F, € F,} with F, = F,,U{(a,b) € E;_, | a € c(F,)}
w-1
F=FE-{RHuJ&FE -{ENUF,
i=2
for some F} € F; and Ef € F} (1 =2,3,--- ,w —1). Then F* is the'set
of Ferrers relations in J(L) x M(L) and Jpepm F = J(L) x M(L) — I
with |F*| = |F| —w+ 1. Hence we conclude that dim(L) < |F| —w+ 1.

(2) Suppose that [J(L) x M(L) — I = Upcr F # 0. Then there is a
Ferrers relation Fy in [J(L) x M(L) — I} —Jpcx F with Fy # 0. Now we
construct Ferrers relations from F as follows: :

Fi ={F | FL € 1} with F} = FiU{(a,b) € Fy | a € c(F1)}
Fs ={F; | F» € Fp} with F; = F,U{(a,b) € E] | a € c(F2)}
.7'-;; = {Fg | e fg} with Fg =F3U {(a, b) € E; I ac C(Fg)}

Fo ={F; | Fy € Fyu} with F, = F,,U{(a,b) € E}_, | a € ¢(F,)}
w—1
F=U&E - EDuE
i=1
for some Ef € F; (i = 1,2,--- ,w — 1). Then F* is the set of Ferrers
relations in J(L) x M(L) and Uper. F = Uper F U {Fo} with |F*| =
|F| — w. Hence we conclude that dim(L) < |F| — w + k, where k =
dim([J(L) x M(L) — I] = Uper F)- a

REMARK. By Lemma 7, we know that if [J(L) x M(L) — I] —
Urer F # 0, then we obtains that dim([J(L) x M(L) —I| —Upr F) >
dim(L) —|F|+w. In particular, if [J(L)x M(L)—I]|—UperF # 0 and
|F] < dim(L), then we have dim([J(L) x M(L) — I| = Uper F) > w.
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Consider the finite lattices L, and L, with dim (L;) = s and dim
(Lg) = t. Then there are Ferrers relations Fy, Fy, - - - , F; such that J(L;) x
M(L,)— I = J;_, F; and there are Ferrers relations Gy, Gy, - - - , G; such
that J(Ls) x M(Lg) — I = J;_; G;. For A and C with A C J(L,) and
C C J(Ls), we have the following properties:

dim(J(L1) x C,M(L) x {1},I) = dim(J( ), M(Ly) x {1}, 1)

im(J(Ly), M(Ly), I) = s

im(J(L,0Lg), {1} x M(Lp),I)
(J( (L

= dim(J LQ),M ) 12) = {.

J(L,OL,
)

It
o o

dim(A x J(Lg), {1} x M(Ly), )

ExXAMPLE. Consider the complemented modular lattices L; and L,
with L; = Ly = M;s. Then J(M3) = {a,b,c} = M(M;) and dim(M;) =
2. Then there are two Ferrers relations F = {F}, F5} such that F; =
{(a,b), (a,c), (b,c)} and Fy = {(b,a), (c,a),(c,b)}. But we have J(L) #
c(Fi) U c(Fy) = {a,c}. Further, we know that dim(L,00L,) = dim(L,) +
dlm(Lg) = 4 and so dlm(LIDLg) 74 dlm(Ll) + dlm(Lz) - 1.

3. Proof of Theorem

Let L; and L, be finite lattices with dim(L;) = s and dim(L;) = ¢ and
let F = {F,, F5,--- ,F;} and G = {G1, Gy, - - , G;} be the set of Ferrers
relations in J(L;) x M(L,) and J(L;) x M(Ls), respectively. Without
loss of generality, we may assume that (J;_, F; = J(L1) x M(L;) — I
and i, ¢(F;) = J(I1) and that {J;_; G; = J(Ls) x M(Ly) — L. For
each F; € F and G, € G, let

Fr ={((a,¢),(b,1)) | (a,b) € F; and c € J(L2)}
G; ={((a,¢),(1,d)) | a € J(L,) and (c, d) € G;}.

Then F; and G are Ferrers relations in J(L,OLy) x M(LiULy). In
particular, for some G; € G, let

Ui ={((a,¢),(1,d)) € G | (a,¢) € (F7)}-

Then each F;‘UU1J( =1,2,---,s)isalso a Ferrers relation in J (L,0Lg)x
M(L,0L,). Since [J;_, ¢( ) = J(Ly), it follows that G C U;_,(F; U
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Uij,) for some jo with 1 < 75 < ¢ and hence
s t

UE U, u | 6 =J(i0L0) x M(LOLs) - 1.
i=1 §=1,3#io

Hence we have

Let H be a set of the saturated Ferrers relations in J(L;OLy) x
M(L,0Ly) with |H| < dim(L;) + dim(Ly) — 1 = s+ ¢t — 1 such that
Unew H = J(I1OLy) x M(L10OLy) — I and let X = {H € H | r(H) =
B'x{1}}and Y ={H € H | r(H) = {1} x D'} for some B' C M(L,)
and D' C M(L,).

CrLAamM 1. X U )Y is a partition of H.

Suppose not, that is, there is a Ferrers relation H € H such that
{(b1 1)7 (17d)} g T(H) Then

Hb,1)=H1,d) = {((a,c),(5,1)) |a£Lbin L, and c € J(Ls)} N
{(a,c),(1,d)) |a € J(Ly) in and ¢ £ din Ly}.

Hence H U {((a,¢),(b,1)) | a £ bin L; and ¢ € J(Ls)} is also a Ferrers

relation in J(L1[0Ls) x M(L,OLs) and {((a,c),(b,1)) | a £ bin L; and

c € J(Ly)} ¢ H, which is a contradiction. Hence we have XY U)Y is a
partition of H.

Consider the projection mappings 7, 7y as follows:
Define my : H — J(Ly) x M(L;) by

m(H) = {(a,b) | ({a} x J(L2)) x {(b,1)} C H}
for H € H. Similarly, define my : H — J(Ly) x M(Ly) by

m(H) = {(c,d) | (J(L1) x {c}) x {(1,d)} C H}

for H € H. Let X be an arbitrary element of X. If (a1, ), (as,b2) €
m1(X), then a; € by and ag £ by in Ly and ((ay, ¢), (b1, 1)), ((az, ¢), (b2, 1))
€ X for all ¢ € J(Ls). Hence we know that ((ai,c),(be,1)) € X or
((ag,c),(by,1)) € X for all ¢ € J(Ly) and hence (a;,by) € m(X) or
(az,b) € m(X). Thus m(X) is a Ferrers relation in J(L;) x M(L,)
for all X € X. Similarly, we know that m(Y") is a Ferrers relation in
J(Lz) x M(Ly) forall Y € Y.
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Define p; : H — J(Ly) x M(L,) by

pi(H) = {(a,5) | ((a,¢), (b, 1)) € H}
for H € H. Similarly, define p, : H — J(L2) x M(Ls) by

p(H) ={(d,d) ] ((d,c),(1,d)) € H}
for He H. For X € A, if (al,bl) (ag,bz) € pl(X), then g, £ by, as j(_ by
in L; and ((ay,c), (bl,l)) ((ag,c), (b2, 1)) € X for some c,d € J(Ly).
Hence we know that ((ai,c), (b2,1)) € X or ((ap,¢),(b1,1)) € X for
some ¢, € J(L,) and hence (ay,b2) € p1(X) or (az,b) € p1(X). Thus
p1(X) is a Ferrers relation in J(L;) x M(L;) for all X € X. Similarly,
we know that po(Y') is also a Ferrers relation in J(Ly) x M(L,) for all
Y € ). Hence, for H € #, we conclude that m;(H) and p;(H) are
saturated Ferrers relation in J(L;) x M(L;) fori = 1,2.

CLAamM 2. |[X| > sor |Y] >t
Suppose that |[X|=s; <sand |Y|=¢ <t

Step 1. For all X € X and Y € Y, we know that p;(X) and py(Y)
are saturated Ferrers relations in J(L;) x M(L;) and J(L;) x M(L,),
respectively. Then there is at least one Ferrers relation U; in J(L;[Ly) x
M (L,0L,) such that

{a} x J(Lg)) x {(b, D}y ch = | xc Y
XeX Ye)y
for some (a1,b,) € J(L1) x M(L;) — I,. Similarly, there is at least one
Ferrers relation V; in J(L;0Ly) x M(L,0L,) such that

(L) x ) x (L) cvi—- Jy e | x

Yey XeXx
for some (c1,dy) € J(Lg) x M (L) — Ip. If {m(X) | X € X} does not a
join-cover of L, or {my(Y) | Y € Y} does not a join-cover of Ly, then U; ¢
Unen H or Vi ¢ Ugey H, which is a contradiction. Then we may assume
that UXGX (7r1(X)) = J(L1) and Uyicp c(m(X')) # J(L;) and that
Uyey e(ma(Y)) = J(Ly) for all X’ C X. Since ({a;1} x J(Lq)) x {(b1, 1)} C
U, C UYey Y, it follows that dim([J(L10Lg) x ({1} x M(La)) -1} -V, —
UYey Y) > 1 by Lemma 7. Hence there is a Ferrers relation V; in
J(L1OLy) x M(L,0L,) such that

(J(L1) x {e} =) x {(Ld)y cVo-Vi—- | JYc |J X

Yey XeXx
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for some (cp,ds) € J(Lg) x M(Ly) — I,. But, since (J(L1) x {a1}) x
{(1,d))} € Vi C Uxer X and Uyxicp c(m (X)) # J(L1) for all &7 C
&, it follows that X NV; # 0 and ¢(m(X)) € Ugex_(xy c(m(A)) for
all X € X and hence there is at least one element ay € c(m (X)) —
Uaex—(x; ¢(m1(A)) such that

{((G‘Oac)a (17d)) | ((av C)’ (11d)) € Vl} cX

for all X € X. Further, there are two distinct elements ((ao, ¢), (1,d)) €
Vi and ((a, "), (1,d")) € Va2 such that

d<d and ¢ <d in L

for all a € J(L;). Hence we have ((ag,c”),(1,d")) € X for all X € X.
And hence ((ao, ¢"), (1,d")) € Vo € Uxc» X, which is a contradiction as
Vo C Uxex X Similarly, it is impossible that (Jy.y c¢(m(Y)) = J(L2)
and Jyreyr c(ma(Y?)) # J(Lg) for all Y’ C Y.

Step 2. By Step 1, there are proper subfamilies A; and )) of X and
Y, respectively, with Uycy, P1(X) Np1(U1) = 0 and  Uyy p2(Y) N
p2(V1) = 0 such that

U em(x))=J(L)and Vi c | J X,

XeX Xex
U e(me(Y)) = J(L2) and U, C U Y.
Yen Yeh

Since {m(X) | X € X,} is a join-cover of L, and it is not a meet-cover of
Ly, it follows that dim([J(Li0Lg) x (M (L1) x {1}) I} = U1 —Uxex X) >
1 by Lemma 7. Since each p;(X)(X € X) is a saturated Ferrers rela-
tion in J(L;) x M(L,), it follows that there is a Ferrers relation Us in
J(L,0Ly) x M(L,0L,) such that

({a2} x J(L2) = e(V1)) x {(b2, )} C U = U1 = | X,

XeXx

»(Uz) C U p1(X) and U, C U Y
XeX Yey-
for some (ay, by) € J(Ly) x M(L,) — I;. Similarly, since {m(Y) | Y € )}
is the join-cover of L, and it is not a meet-cover of L,, it follows that
dim([J(L,0Lg) x ({1} x M(L2)) = I = Vi = UyeyY) > 1 by Lemma 7.
Since each po(Y)(Y € J) is a saturated Ferrers relation in J(Lg)x M (L,),
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it follows that there is a Ferrers relation V, in J(L,0Ly) x M(L,0Ly)
such that

(J(L1) x {ea} = c(U)) x {(L &)} c Ve -V = | v,
Yey
p)c | m¥)advic |J X

Yen Xex-x
for some (62, d2) € J(LQ) X M(Lg) — I
Consider the subordered sets A’ and C' of J(L,) and J(L,), respec-
tively, as follows:

A=cpU))u |J cp(X)and C' =cpm@)u |J c@pY)).
XeX-x Yey-

Suppose that A" C J(L;) or C' C J(L,) and that a; < by, ay < b; in
L, and ¢; < dy,c3 < dy in Lo. Slnce {al} X J LQ)) X { b, 1 } cU cC
Uyey, Y and (J(L1) x {a1}) x {(1,d1)} € Vi C Uxex, X, it follows that,
forall X € X and Y € ),

[(J(L1)x{er}) x{(1,d)}INX # 0 and [({a1} x J(L2))x{ (b1, )}INY # @
and hence we obtain that

(J(L1) x {e2}) x {(1,d2)}n | J X =0 and

Xen

({a2} x J(L2)) x {(b2, D} | Y =0.
Yeh
Thus we have Uy & Uy.y, Y and Vo ¢ Uy, X. Further, since A’ C
J(Ly) or C' C J(Ly), it follows that

({a2} x (J(Lo) = O x {2, )} ¢ |J XU |J Y

XeX; Yey-»
(J(IL) - A) x{ah) x{(Ld)} ¢ |JYUu |J X
Yeyn XeX-Xy

Since p1(Uz) C Uxer, P1(X) and pa(V2) C Uyey, p2(Y), it follows that
)¢ |J mX)andp(a) ¢ |J pa(Y).
XeX-4; Yey-n
Hence we have

({az} x (J(La) = CY) x {(bey D} ¢ |J H

HeH



The dimension of the rectangular product of lattices 27

((I(Ly) = &) x {e}) x {1, &)} ¢ | H,
HeH

which is a contradiction. Hence we may assume that A’ = J(L;) and
C' = J(Ly), that is, there is a subfamily A, of X — &) such that

(J(Ly) x {e} —cU) x {(Ld)} c Vo -V - J Y,

Ye)y

J(Ly) = c(mU)) € |J edm(X))and Vo ] X

XeX; XekXs
and there is a subfamily J» of Y — Y such that

({az} x J(L2) = (V1)) x {(b2, )} C Ve = U1 ~ {J X,

XeX
J(L2) = e(m(V) € |J e(ma(Y)) and Up C |} Y-
Ye), Ye),

Step 3. Let k be a positive integer with & > 2. By step 2, we know
that {m(X) | X € X} U {p1(Uk-1)} is a join-cover of L, and it is not
a meet-cover of L;. By Lemma 7, we have dim([J(L10Ls) x (M (L) x
{1}) = I = UL, Ui = Uxex X) > 1. Hence there is a Ferrers relation
Uk+1 in J(L10OLg) x M(L;0L5) such that

k
({a} x J(La) — (Vi) x {(brs1, 1)} C Upia — UUi - U x

=1 XeX
pUc)c | pX)andUnc | Y
XeXx, Yey-ub_ Y

for some (ayi1,bx11) € J(L1) x M(L;) — I,. Hence there is a subfamily
Vi1 of Y — U;-c:l Y; such that

J(Lg) —e(ma(Ve)) € |J  e(me(Y)) and

YeVin

({ars} x J(L2) = (Vi) * {(be+1, 1)} C Vs © U r

Yelina
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Similarly, since {my(Y") | Y € Y} U{p2(Vs_1)} is a join-cover of L, and
it is not a meet-cover of Ly, then there is a Ferrers relation Vj,; in
J(LyOLg) x M(Ly0Ly) such that

k
(J(L1) x {epa1} = e(Ur)) x {(1, dks1)} C Vigr — UVj - U Y,

j=1 Yey
p(Vin)C |J p(Y)and Vinc | X
Y€, Xex-uUb X

for some (cxy1, dys1) € J(La) X M(Lg) — I,. Hence there is a subfamily
Xip1 of X —|J5 | X, such that

J(L) —e(mUs) € |J e(m(X)) and

X€eXi

(J(Ly) x {ern} = e(Up) x {(Lde)} cVin € | X.
XGXL-H
By the finite repeating of the above same methods, without loss

of generality, we may assume that there is a Ferrers relation Uy, in
J(L1DL2) X M(L1DL2) and ‘/n+1 in J(LIDLz) X M(L1DL2) such that

({amur} x J(L2) = e(Vim)) X {(bme1, 1)} C Unia = | JU: - | X,

i=1 XeX

PUna)C J mX)and | c(m(X)) € J(Ly)
XeX, Xex-up x;
and '

(J(L1) x {ens1} = e(Un)) x {(L,dns)} < Var - Vi - U ¥,

j=1 Ye)y

(Vo)) C |J m(Y)and | e(m(Y)) € J(Lo).
YeV, Yey-ur,y;
for some (@my1,bm11) € J(L1) x M(Ly) — I1 and (Cni1,dnyr) € J(Lo) X
M(Ly) — I,. Note that for any two distinct Ferrers relations U; and U f
of {U1,Us, -+ ,Uni1}, U; UU; is not a Ferrers relation and so there exist
elements (a;,b;) € pi(U;) and (aj,b;) € p1(U;) such that a; < b; and
a; < b; in L,. Similarly, for any two distinct Ferrers relations V; and V;
of {Vj,Vo, -+, Va1}, Vi UV, is not a Ferrers relation and so there exist
elements (ci,dr) € po(Vi) and (¢, d;) € py(V)) such that ¢; < d; and
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¢ < dyin Ly. Then X; (i = 1,2,--- ,m <n)and Y; (j =1,2,--- ,n)
have the following properties:
(i) X1 and Y, are join-covers of L;00L; which do not contain a join-
cover proper subfamily.
(i) For all 1 = 2,3,--- ,m, X, or X; U {U;} is a join-cover.of L,[1L,
which does not contains a join-cover proper subfamily.
(iii) For all j = 2,3,--- ,n, Y; or Y; U {V;} is a join-cover of L,[1L,
which does not contains a join-cover proper subfamily.
(iv) J(LyOLy) x (M(Ly) x {1}) = I = Uger X YU Ui and U; ¢
Uxex X foralli=1,2,--- ,m+1.
(v) J(IOLs) x ({1} x M(L)) — I = Uyey Y UL, V; and ¥ ¢
Uyey Y, Vie € UyeyY forall j = 1,2,--- ,m and for some Vj, €
{Vm+la Vm+27 T Vn+l}-

We let

U={U;|1<i<m+1}u(X —| A,

=1

V={V;|1<j<n+ 13U - W)

i=1
By (iv) and (v), we know that

m+1 m

YuicJyad Jviuy,c | X

i=1 Yey j=1 Xex
If U4 and V do not join-covers of L;0Ls, then we know that U, &
Ugen H and Vj; & Upyey H. Further, even if &/ and V are join-covers
of L,0L,, but, since [U| < |X|+ 1 < dim(Ly) and [V| < [Y|+1 <
dim(L,), we know that neither Y — {U} nor V — {V} is join-cover of
Li0L; for all U € U and V € V. Hence, if Uny1 C UyeyV, then
U—{Up41} is not a join-cover of L;(0L; and hence Vjy & gey H, which
is a contradiction. Similarly, if Vj, € Uyey U, then Unii & Ugen H,
which is a contradiction. Then the contradiction completes the proof of
the second claim.

Cramm 3. |X| < sand |Y| <t

Suppose that |X| > s. Note that |[H| < s+t — 1. Without loss
of generality, we may assume that |X¥| = s+ k(1 < k <t —1) and
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Y| =t — (k+2). Since |Y| =t — (k +2) and dim(J(L,0Ls) x ({1} x
M(L1))) = t, we have dim([J(Ly) x M(Ly) — I5] — Uyey p2(Y)) > k+2
and hence there are (k + 2)-distinct Ferrers relations V4, V3, - - - , Vi in
[J(L1DL2) X M(L1DL2) — I] — UYEJ) Y such that

m(V;) = pa(V3), c(PoVA) # c(Po(V)) and
(L) x {eh) x {(Ldy c Ve [ X

Xex
for some (cj,d;) € J(L2) x M(Ly) — I, and for all 1 <4, j < k+ 2 with
i # j. Since | Y| =t — (k + 2) and dim(J(L;0L,) x ({1} x M(L,))) = ¢,
we have
c(p(V3) = | clpa(Y) #0
Yey

for all j = 1,2,--- ,k + 2. Hence there are (k + 2)-distinct subfamilies
Ay, A, -+, Xiyo of X such that

U em(X3) = J(L1) and (J(L1) x {e;}) x {(L,d)} c Vi € | X;
X;eX; X;eX;
for all j = 1,2,k + 2. If J(L,0Ly) x (M(Ly) x {1}) C Uyex X
or X = Uf:f A, then dim(L;) < s+ k- (k+1) = s — 1, which is a
contradiction. Then we may assume that J(L;Ly) x (M(L,) x {1}) —
Uxex X # 0 and X # [J*? X,. Hence we know that dim(J(L;0L,) x
(M(L1) x {1}) —=Uxex X) > 2 by Lemma 7. Without loss of generality,

we may assume that there are at least two distinct Ferrers relations U,
and U, in J(L,0Ly) x M(L,0Ls) such that

({1} x J(Ly) = ) x {(b, )} c U1 = U — | ] X,

XeXx
({az} x J(Lg) = C3) x {(b, 1)} c U = Uy — | ] X,
XeX
pnU)Upl) c | mX)andiulyc |JY
XeUtty, Yey

for some (a;, b;) € J(L1)xM(L1)—5(i = 1,2) witha; < by, a3 < b in L,
and CyUC, = U2 e(V;). I J(L,OLg) x ({1} x M(L2)) =1 € Uyey YU
Uf:le], then we have Uy ¢ yey H or Uz ¢ Uyey H by Lemma 6.
Then we may assume that [J(Li0Lg) X ({1} x M(Ly)) — I = (Uyey YU
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Uf:f V;) # 0. Hence we know that these conditions are the same situa-
tion in Claim 2. Without loss of generality, we may assume that there are
finite subfamilies X7, Xy, - -+, Xki2, Xhys, Xkra, -+ 5 Akrom—1, Xhyom of &
and non-empty Ferrers relations Uy, Uy, Us, Uy, - - - , Uspm—1, Usp such that

(1) Foralli=1,2,--- ,k+ 2, each X; is a join-cover of L;[1L, which
does not contain join-cover proper subfamily.

(i) Foralll = k+3,k+5,--- ,k+2m—3, X, or X;U{U,;—x—2} and X},
or Aj.1 U {U;_x-1} are join-covers of Li[1L, which do not contain
join-cover proper subfamily.

(iii) p1(U1) Up1(U2) C Uxeuzz, P1(X) and pi(U;) C Uxey,,, Pr(X) for
alli=3,4,---,2m.

(iv) J(L\OLy) x (M(L1) x {1}) = I = Uxer X U U U; and U; ¢
Uxex X foralli =1,2,---,2m.

Similarly, there are subfamilies Vi, Vs, -+ , Yan—1, Yo of Y and non-

empty Ferrers relations ‘/1, ‘/21 Tty WH—I, ‘/k+2a Tty V;c+2n+1, V;c+2n+2 with
m < n such that

(1) Forall j,j'with 1 < j, 5" < k+2and j # 7', c(p2(V;))~Uyey c(p2(Y))
# 0 and c(p2(V})) # c(pa(Vy))-

(i) For all j = 1,3,5,---,2n — 1, po(Visjs2) C UYey]- po(Y) and
P2(Visjas) C Uyeyj+1 pa(Y).

(i)’ Yy or Yy U{V}n Vi -+ 1Vju} and Y or J,U {V'u+17 Vier2, -+ ’V}k+2}
are join-covers of L;[]Ls which do not contain a join-cover proper
subfamily for some rearrangement {ji, 72, - - - , jkr2} of {1,2,--- , k+
2}

(iv) For all j = 3,5,--- ,2n — 3, Y; or Y; U {V,4x} and Y;;y or Y;;1 U
{Vj+k+1} are join-covers of L;00Ly which do not contain a join-cover
proper subfamily.

(v J(LOLg) x ({1} x M(Lg) = I = Uyey Y ULV, and V; ¢

=1
Urey Yo Vie € Uyey Y, Vi, € UyeyY forall j =1,2,---,2m and
for some Vj, and V| of {Vam1, Vamaa, - -+, Vansa}
We let

k+2m
U={U;|1<i<2mpu(X - [ &) and

i=1

2n
V={V;|1<j<k+22m+2 Uy -]V

=1
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By (iv) and (v)’, we know that

2m 2m
Uvic JY and | JV;uv;uv, € | X
i=1 Yey =1 XeXx

If i and V do not join-covers of Li[1Ly, then we have
U1 UUsn ¢ | J Hand V;, UV, ¢ | H.

Hel HeH

Further, we know that, if U — {U} or V — {V'} is join-cover of L [1L, for
some U € U and V € V, then we have dim(L;) < s—1ordim(Ly) < t-1.
Hence we conclude that neither & — {U} nor V — {V} is join-cover of
L,OL, foral U € Y and V € V. Then, even if U and V are join-
covers of L[1L,, but we know that neither & — {U} nor ¥V — {V'} is
join-cover of Li[0Ls for all U € U and V € V. Hence, if Uy U Uz, C
Uvey V, then U — {Usm_1, Uam} is not a join-cover of L;C1L, and hence
Vi,UV) & Upgey H, which is a contradiction. Similarly, if Vj, C Uyey U,
then Upp—1 & Ugey H and Uz ¢ Upey H, which is a contradiction.
Then the contradiction completes the proof of the third claim.

CrAamm 4. If |X| = s, then there is at most one Ferrers relation
Y € Y such that Y C Uyer X

Clearly, there is one Ferrers relation Yy € ) such that Yy C Uyxcr X
Note that, for all Y € ) and for all a; € J(L;),

Y N ({a;} x J(La), {1} x M(L2),I) # 0

and that there is a pair (c,d) € J(Ly) x M(Ls) — I such that (J(L;) x
{c}) x {(1,d)} C Y. By Lemma 6, if J(L,0Lg) x (M(Ly) x {1})
Usxex X, then there exist at most one Ferrers relation Y € } such that
Y C Uygcx X. Hence we have |Y| >t — 1 and hence [H]| > s+t — 1.

Then we enough to show that J(L;OLg) x (M(L;) x {1}) € Uxexr X
Suppose that J(L;0Lg) x (M(Ly) x {1}) € Uxex X and that |X]| = s
and |Y| = t — 2. Note that neither X’ nor )’ is a meet-cover of L;[JL,
for all X' C X and ) C Y and that p;(X) and ps(Y’) are also saturated
Ferrers relations in J(L;) X M(L;) and J(Lg) x M(L,), respectively, for
all X € X and Y € ). But, these conditions are the similar to the case
in Claim 3 for k£ = 0. By the similar methods in Claim 3, we obtains a
contradiction. Then it is impossible that J(L,0Ls) x (M(L;) x {1}) €
Uxex X with |X| = s and |Y| = t — 2. Hence the proof of claim 4 is
completed.
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Consider the given H be the set of the saturated Ferrers relations
J(LhOLy) x M(L,0OLy) — I with |H| < dim(L;) + dim(L;) — 1 such
that UHG’HH = J(L1DL2) X M(L1DL2) — I and let X = {H e H |
r(H) = B x{1}} and Y = {H € H | r(H) = {1} x D'} for some
B' ¢ M(Ly) and D' C M(Ls). Further, we know that X U) is a
partition of X and that |X| = s or || = ¢ by Claims 2 and 3. By Claim
4, there is at most one Ferrers relation Yy € Y such that ¥, C | xex X-
Furthermore, for all X € X, there is (a;, b;) € J(L;) X M(L,) — I such
that ({a;} x J(L2)) x {(b;;1)} C X. Then, by Lemma 6, there does
not exist Ferrers relation Xo € & such that Xo C Uycy_(y,, Y- Hence
|H| = |X| + |Y| > dim(L;) + dim(Ls) — 1. Hence we conclude that
dim(L,0Ls) = dim(L,) + dim(L,) — 1. O

4. Concluding remarks

In the main theorem, we have the following:

1X| = siff [Y|=t—1for | Jeo(F) = J(L)
'L=t1
%] = s—1iff |¥|=tfor | Jc(G;) = J(Ln).

j=1

By (L,00L,) = (L,OL,) and Claims 1 and 2, if |X| = s — 1, then there
is no Ferrers relation Y € ) such that Y C Uy X. If |X| = s, then
there is at most one Ferrers relation Y € Y such that Y C Uxex X
Hence even if | J;_; ¢(F;) = J(L;) and U;=1 c(G;) = J(Ly), then |X| =s
or |X| = s—1. Whenever |X| = s or V| = t, then { g, H is the largest
subset of J(L1OOLy) x M(L1OLy) — I and |H| = [X|+|Y|=s+t - 1.

For any finite complemented modular lattice L, we known that J(L) =
A(L), M(L) = DA(L) and |J(L)| = |A(L)| = |M(L)| = |DA(L)|. Then
we have the following.

L. Let L; and L, be finite complemented modular lattices with dim(L,)
= s and dim(L,) = t. Suppose that F = {F}, F;,--- , F}} is the set of
Ferrers relations in J(L;) x M(L;) and G = {G;,Gs, - ,G:} is the
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set of Ferrers relations in J(Ly) x M(Lg). If J(Li) = {J,
J(Ls) = U;zl ¢(G;), then we have

c(F;) or

Further, we know that 220022 & C, U {0,1} with dim(2°02%) =
dim(C,; U {0,1}) = dim(Cy) = 3.

Furthermore, for any natural numbers m and n(> 2), we define an
ordered set R as follows:

R™ = J(2"OM,,) U M(2"0M,,).

Then, for all integers ¢,k and 7,l with 1 < i, k<nand 1< j,l <m, we
define the ordered set as follows:

A(an) = {aij}a DA(an) = {bkl’bﬂl}a
a;; < byy iff 2 #kand a;j < by lﬁj=l

In fact, we know that for any natural number n(> 2), there are infinitely
many ordered sets R™ with dim(R™) = n + 1. In particular, RZ is an
irreducible ordered set with dim(R2) = n + 1 and

dim(2?02?%) = dim(2?) + dim(2%) — 1 = 3,
dim(R}}) = dim(2"0M,,) = dim(2") + dim(M,,) — 1 =n+ 1.
II. Note that, for all integers i,k and j,! with 1 < ¢,k < n and
1<51<2,
A(R?%) = {a;;} and DA(R2) = {bx1,ba};
a;; < by iff i #k and a;; < by iff j =1L.
For any element ay; € J(R2), for all i = 1,2,-- ,n with ¢ # k, let

F = {(@i1,b:1), (@i2, bir), (@i, bo2)}  ifl=1
: {(ai1, bi1), (@i, bir), (@i, bo1)}  if 1 =2

G = {(aiz,bn) |1 =1,2,--- ,n} ifl=1
T {(aiybo2) i =1,2,--- ,n} ifl=2.

and

Then we have

|J FuG=J(R) x M(RZ) - I.

i=1,i#k
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Further, we know that there is a subordered set R of R2 — {ay} such
that R = S,. Hence we have dim(R2 — {ay}) = n. Clearly, we know that
dim(R? — {bn}) = n and dim(R2 — {by}) = n. We conclude that R? is
an irreducible ordered set with dim(R2) = n + 1.

For a natural number m, we may assume that, for all ¢ with 1 < ¢ < m,
a; and b; are incomparable in 2™ and that J(2™) = {a,a,--- ,ay} and
M(2™) = {b1,by,- -+ , b} with dim(2™) = m and U, Fi(b;) = J(2™),
where F; = {(a;,;)}. Then we have the following.

III. For any finite lattice L with J(L) = A(L) and M (L) = DA(L),
then we have

dim(2™L) = dim(2™) + dim(L) — 1.

IV. Let m be natural number and let L be a finite complemented
modular lattice. Then we have

dim(2™0L) = dim(2™) + dim(L) — 1.

V. Let nj,ny,- - ,n; be the natural numbers. By the main theorem,
we have dim(2™M[02™) = n; 4+ ny — 1. By Lemma 1, we have

J(2mO2™) = J(2M) x J(2™) = A(2™) x A(2™) = A(2mO2™)
and
M(2m0O2™) = (M(2™) x {1}) U ({1} x M(2™)) = DA(2m0O2™).
Then we have
dim(2™O2™02™) = n; + ny + nz — 2.
By the induction on k, we conclude that

dim(2M02™0- - 02%) =n +ng + -+ +ng — k + 1.

A partition of a set A is a set 7 of nonempty pairwise disjoint subsets
of A whose union is A. The members of 7 are called the blocks of 7. If
a and b (a,b € A) belong to the same block we write a = b(r).

Part(A) will denote the set of all partitions of A is an ordered set if

m < o iff £ =y (m) implies z = y(m,).
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In particular, if |A| = n, then (Part(L,), <) is denote by II,. Hence I,
is a simple geometric lattice and that J(II,) = A(Il,) and M(Il,) =
DA(II,). Then we have following:

VL. Let m be natural number and let II,, be a finite partition lattice.
Then we have

dim(2™0IL,) = dim(2™) + dim(IL,) — 1.
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