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CONSTRUCTIONS FOR SPARSE ROW-ORTHOGONAL
MATRICES WITH A FULL ROW

Gi-SANG CHBON, SE-WON PARK AND HAN-GUK SEOL

ABSTRACT. In [4], it was shown that ani n by n orthogonal matrix
which has a row of nonzeros has at least :

(llogan} + 3)n ~ olloganj+1

nonzero entries. In this paper, the matrices achieving these bounds
are constructed. The analogous sparsity problem for m by # row-
orthogonal matrices which have a row of nonzeros is conjectured. -

1. Introduction
At the 1990 SIAM Linear Algebra meeting, M. Fiedler asked:

How sparse can an n by n orthogonal matrix (whose rows and
columns cannot be permuted to give a matrix which is a direct sum of
matrices) be? ' E

The assumption precluding direct sums is necessary, since otherwise
the answer is trivially n. Fiedler’s question is answered in [1] (see
also [5]), where it is shown that each n by n orthogonal matrix which
is not direct summable has at least 4n — 4 nonzero entries, and that
for n > 2, there exist such orthogonal matrices with exactly 4n — 4
nonzero entries. Recently, the n by n orthogonal matrices with exactly
4n ~ 4 nonzero entries were constructed in [2]. The analogous sparsity
problem for m by n row-orthogonal matrices under two natural notions
of irreducibility which extends the work in [1, 5] was studied in [3].

And also, it was studied in [4], the question of how sparse an n
by n orthogonal matrix which has a column of nonzeros can be. In
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particular, it was shown that such an n by n orthogonal matrix has at
least matrix
(llogan] + 3)n — 9llogzn]+1 O

nonzero entries, and matrices achieving these bounds are constructed
and characterized, and are related to orthogonal matrices arising from
the Haar wavelet.

Note that if A is an n by n orthogonal matrix with a row of nonzeros
then A has also at least the number of nonzero entries in (1).

In this paper, we get another constructions for the n by n orthogonal
matrices which have a full row and have exactly nonzero entries in (1),
where a vector is full if each of its entries is nonzero. Furthermore, the
analogous sparsity problem for m by n row-orthogonal matrices with
a full row is conjectured.

For a matrix A, we denote the number of nonzero entries in A by

#(A).

2. Constructions for the sparsest orthogonal matrices with
a full row

An m by n matrix is row-orthogonal provided each of its rows is
nonzero, and its rows are pairwise orthogonal.

We begin by describing a way to build row-orthogonal matrices from
smaller row-orthogonal matrices. Let

X=|r

R

>y

be an s by ¢ row-orthogonal matrix and let

T ]
1Y
Y__Yj

be an k by [ row-orthogonal matrix, where X is (s—1) by t matrix and
Yis(k— 1) by I matrix. Define XQY to be the (s + k — 1) by (£ + 1)
matrix =
X O
XY = |xT yT
oY
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Certainly, XQY is a row-orthogonal matrix. We can extend this con-
struction to use any number of row-orthogonal matrices by defining
XOYOZ as (XOY)OZ. This construction can be used in a recursive
manner to construct m by n row-orthogonal matrices.

Now, we describe a way of constructing an n by n orthogonal ma-
trices having a full row and exactly (|logan] + 3)n — 21°821+1 nongzero
entries. This is a different manner from the one used in [4].

LeMmmMa 2.1. Let

x=[2], wi v=[3]

be anr by r orthogonal matrix and a s by s orthogonal matrix respec-
tively where X is (r — 1) by r matrix and Y is (s — 1) by s matrix.
Then

X ¢ Y

L T

isann by n row-orthogonal matrix where r + s = n. Thus the matrix,
A, obtained from A by normalizing the row r and the row n of A is an
n by n orthogonal matrix with the same zero pattern as A.

(2) A=

Proof. Since XQY is an (n — 1) by n row-orthogonal matrix, it is
sufficient to show that the row r and the row n of A are orthogonal
each other. Indeed,

Ky " - yT1 = kP - TP =1-1=0.
Thus the proof is completed. O

Note that if both xT and y7 in Lemma 2.1 are full rows then A is
an n by n orthogonal matrix with a full row.

Throughout in this paper, we define p(n) by

p(n) = (|logan| + 3)n — 2lcseni+1,
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THEOREM 2.2. Let

be an r by r orthogonal matrix with the full row x* which has p(r)
nonzero entries, and let

be a s by s orthogonal matrix with the full row y* which has p(s)
nonzero entries, wherer + s =n. If

(3) 9lloganj—1 <rs< 9llogan]

X 0 v
A=
B

is an n by n row-orthogonal matrix with a full row which has p(n)
nonzero entries. Thus the matrix, A\, obtained from A by normalizing
the row r and the row n of A is an n by n orthogonal matrix with the
same zero pattern as A.

then

Proof. There exist r and s satisfying (3) and r + s = n, since we
may take 7 = [ 2] and s = |21]. From Lemma 2.1, Ais ann by n
row-orthogonal matrix with a full row. It is easy to show that

{ llogar| = |logas| — 1 = |logon| —1 if n=2F —1,
|logar| = |loges| = {logan] — 1 otherwise.

Thus if n # 2% — 1 then

#(4) = #(X) + #(Y) + #(x7 —y7)
= ([logar] + 3)r — 2UeE2mI+1 4 (|logys| + 3)s — 2llogzsl+1 o
= (|logon| + 2)(r + s) — 2. 2lloezn)
= (|logan] + 3)n — ollesznl+1,
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Let n = 2~ 1. Then we take r = | %] and s = | 25 |. Since |logen] =
llogs (2¥ — 1)} = k — 1, we have ,

s = [MJ = 9k~1 - gllogan|

2
Thus
#(A) = #(X) + #(Y) + #(x" D |
= ({loger) + 3)r — 2“°g2"J+l + ([logzs) + 3)s — l‘°szsl+1 +n
= ({logon) +2)(r+s)—3- 2™ 4 54 n
=1(|logan) + 3)n — 2lleeanl+1
which completes the proof. vi 0

Since p(n) = 4n — 4 for n = 2,3,4, from the result in [1], for each
n = 2,3,4 we know zero patterns, Bn, of n by n orthogonal matrices
with a full row which have p(n) nonzero entries. That is,

1100
110
B=' Y, B=|1 11|, B=|" ) [}
11 111 1111
1111
For n = 5, since
11000
11100
BOBy= |, 1 1 1 1}’
00011
by lemma 2.1
11000
11100
(4) 11111
00011
11111
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is a zero pattern of 5 by 5 sparse orthogonal matrix with a full row
which has p(5) = 17 nonzero entries.

Furthermore, from the result in [2], since, for each n = 2,3,4, we
can get n by n orthogonal matrices with the same zero patterns as Bs,
B3, and Bj respectively, we get a 5 by 5 orthogonal matrix with the
same zero pattern as (4).

For example, let n = 9. From (3), since 4 < r,s < 8, we take r = 4
and s = 5. Let X be a 4 by 4 orthogonal matrix with the full row
which has p(4) = 12, and let Y be a 5 by 5 orthogonal matrix with the
full row which has p(5) = 17. Take

- 1 1 -

vz v 00

0 0 I S

2
X vi v

1 1 1 1

2 2 2 2

1 1 -1 1

- 2 2 2 2 -
r_1_ 1 _1 _1 19
2v2 2v2 2 2 2

1 1

i ~w 000
v=|4 4 & o o
4 1 1 1 _1
2v2 22 2 2 2

1 1
L0005

Then

b

I
Nq N
<
57



Constructions Ior spatse row-orthogonal matrices with a full row 389

and
-1 1 -
v R T 0
1 1
o 0 5 -5 0
1 1 1 1
2 2 2 2
1 1 1 1 1 1 1 : 1
A R A A U R e
A= 715 -713 0 0 0
5 3+ &K 0 0
1 1 _1 1 1
0 Wi wE 2 2 T2
1 1
0 © o % L
X o 1 1 1 1 a0 3
L2v2 2v2 2v2 2v2 4 4 242 232 2v/2

is a 9 by 9 sparse orthogonal matrix with the full row which has p(9)
38 nonzero entries.

By these recursive manners, we can construct sparse n by n orthog-

onal matrices with a full row which have p(n) nonzero entries.

3. Conjecture for sparse row-orthogonal matrices with a
full row

We consider the case that A is an m by n row-orthogonal matrix
with a full row.

Let . N
X 1Y
X = [XT] , and Y = [yT}
be an r by r matrix and a s by s matrix, respectively. Then both

X 0
X0Y = | xT )f‘
O Y
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and ~
X 0
A=10 Y
T yT

are (r 4+ s — 1) by (r + s) matrices and have the same nonzero entries.
It.is clear that A is an row-orthogonal matrix with the full row if and
only if both X and Y are square orthogonal matrix with the full row
xT and with the full row yT, respectively.

We define an m by n matrix A with m < n to be indecomposable
provided A does not contain a zero submatrix whose dimensions sum
to n. It is not difficult to verify that if both X and ¥ are non-square
igdecgmposable row-orthogonal matrices, then so is their direct sum
XaY.

Foreachi=1,2,... ,n—m+1, let

xPz‘

be a p; by p; orthogonal matrix with the full row x;fi which has p(p;)
nonzero entries where

p(pi) = (|logap; | + 3)p; — 2llogeril+1,

Define
-Apl 9 0 o
O X, O (0]
(5) A=lo o - o
o O O Pr—m+1
L x5, Xp, S —

where Xp,. is a (p; — 1) by p; row-orthogonal matrix, and

(6) 9lles2(7=h7) ] < p; < 2lloge(5=5mr) | +1
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and
(1) p1+ P2t + Premtl = N

Certainly, A is an m by n indecomposable, row-orthogonal matrix with

the fall row.
There exists p;’s satisfying (6) and (7) since we may assume p <
P2 < - £ Pn—m+1 and wWe may take

_ n _| n+1
= Tl P RTmra)

n+(n—m)J’

Pr—m+1 = l_ n—m+1

For example, let A be a 17 by 19 row-orthogonal matrix with the
form in (5). From (6) since 4 < p; < 8, (p1,p2,p3)’s satisfying p; +
Do+ p3 = 19 are (4,7,8), (5,7,7), (6,6,7), and A has the following forms

respectively:

X 0 o0 Xs 0 0O X 0 O
O X; O 0 X7 Q O Xe Q
® 1o 0 %|"|o o %|"|o 0o %
xI I xT) x3 x¥ x¥ xr xF ¥

whefe for each i = 1,2, 3, R
[Xpi}
T
is a p; by p; orthogonal matrix with the full row x?,; which has p(p;)
nonzero entries. These matrices are determined from Theorem 2.2. It

is easy to compute that #(A) = 71 for the matrices in (8) But note
that if

X3 0 0
A-|0 X 0
0 0 Xs
x5 X xXj

then #(A) = 72. This means that the condition (6) for ;p, ’s is necessary
to get sparse row-orthogonal matrices with- a full row.



342 Gi-Sang Cheon, Se-Won Park and Han-Guk Seol

Now, we determine the number of nonzero entries of A in (5). We
claim
#(A) = (k+ 3)n — (n — m + 1)2~F+!

o (2]

Since 2F < p; < 2%+ for each i =1,2,... ,n —m + 1,

1 | = k if 2% < p; < 2k+1
OBPUZ\ kg1 if p = 2k,

Thus if 2% < p; < 2¥*! for each i =1,2,... ,n —m + 1, then
#(A) = #(Xp) + #(Xpy) + - + #(Xpo_mya)
=(k+3)(pr+p2+ -+ Paemt1) — (n —m+ 1)25F1
= (k4 3)n — (n —m + 1)2F+1,

where

Let p; =21 for i = 5,5+ 1,... ,n—m + 1. Since p; + pjs1+ -+ +
Prn-m+1 = (n —m — j + 2)2k+1

#(A) = #(Xpl) + #(sz) R #(Xpn-m+1)
= (k+3)(p1+p2 + - +pj_1) — (j — )2
+ (k+4)(pj + pjt1+ -+ Pacmt1) — (n—m — j + 2)25+2
= (k+3)n — (n —m + 1)2~*1,
In the above example, i.e., if A is a 17 by 19 row-orthogonal matrix

with the full row in (8) then k = 2, and thus #(A) = 5-19—3-2% = 71.

Thus, for positive integers m and n with m < n, if f(m,n) denote
the least number of nonzero entries in an m by n indecomposable,
row-orthogonal matrix with a full row then we conclude that

(9) fm,n) < (k+3)n — (n —m + 1)2k+1

o (2]

And we have the following conjecture.

where
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CoNJECTURE. For positive integers m and n with m < n, let f(m,n)
denote the least number of nonzero entries in an m by % indecompos-
able, row-orthogonal matrix with a full row, then the equality holds in
(9). Furthermore, the equality holds in (9) if and only if, up to row
and column permutations, the matrix is 4 in (5).

Note that if A is an n by n indecomposable, orthogonal matrix with
a full row, from [4], since

#(A) > (|logen] + 3)n — 2Uogeni+1,

this conjecture holds for m = n. Thus this conjecture is a generaliza-
tion of the result in [4].
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