HOMOTOPY FIXED POINT SET OF THE HOMOTOPY FIBRE

HYANG - SOOK LEE

ABSTRACT. Let \mathcal{X} be a p-compact group, $\mathcal{Y} \to \mathcal{X}$ be a p-compact subgroup of \mathcal{X} and $G \to \mathcal{X}$ be a p-compact toral subgroup of \mathcal{X} with $(\mathcal{X}/\mathcal{Y})^{hG} \neq \emptyset$. In this paper we show that the homotopy fixed point set of the homotopy fibre $(\mathcal{X}/\mathcal{Y})^{hG}$ is \mathbb{F}_p -finite.

1. Introduction

Homotopy Lie group theory was recently invented by W. G. Dwyer and C. W. Wilkerson [3]. The basic philosophy behind the process was formulated by Rector [9] who suggested studying compact Lie group by looking at its classifying spaces and expressing the classical Lie group theory notions in terms of classifying spaces.

A loop space is a triple $\mathcal{X}=(\mathcal{X},B\mathcal{X},e)$, where \mathcal{X} is a topological space, $B\mathcal{X}$ is a connected pointed classifying space of \mathcal{X} and $e:\mathcal{X}\to\Omega B\mathcal{X}$ is a homotopy equivalence from \mathcal{X} to the space $\Omega B\mathcal{X}$ of based loops in $B\mathcal{X}$. Such a loop space is called p-compact group if \mathcal{X} is \mathbb{F}_p -finite and $B\mathcal{X}$ is \mathbb{F}_p -complete. Here the second condition is equivalent to that \mathcal{X} is \mathbb{F}_p -complete and $\pi_0(\mathcal{X})$ is a finite p-group. The p-compact r-torus $BT=K((Z_p)^r,2)$ is an example of p-compact group. Another example is the p-completion of compact Lie group $G, (C_{\mathbb{F}_p}(G), C_{\mathbb{F}_p}(BG), e)$ with $\pi_0(G)$ is a finite p-group where $e:C_{\mathbb{F}_p}(G)\simeq\Omega C_{\mathbb{F}_p}(BG)$.

Dwyer and Wilkerson proved a lot of properties of p-compact groups which are based on homotopy theoretic generalizations of compact Lie

Received March 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 55R35, Secondary 55P35.

Key words and phrases: p-compact group, loop space, homotopy fixed point set. The author was supported by STEPI 97-N6-01-01-A and partially supported by KOSEF 97-0701-02-01-5.

groups ([3], [4]). In particular, they showed that every p-compact group has a maximal torus, normalizer of the maximal torus and Weyl groups. More homotopy theories of p-compact groups are developed in [4], [6] and [7].

We use the following notations and terminology; Let p be a fixed prime number, \mathbb{F}_p the field with p-elements, \mathbb{Z}_p the ring of p-adic integers. All unspecified homology and cohomology are assumed with coefficients in \mathbb{F}_p . A graded vector space H^* over a field \mathbb{F}_p is of finite type if each H^i is finite dimensional over \mathbb{F}_p and is finite dimensional if in addition $H^i = 0$ for all but a finite number of i. A space X is \mathbb{F}_{v} -finite if $H^{*}X$ is finite dimensional over a field \mathbb{F}_p . Bousfield and Kan [1] construct a functor $C_{\mathbb{F}_p}(\underline{\hspace{0.1cm}})$ on the category of spaces, called \mathbb{F}_p -completion functor, together with a natural map $\epsilon_X: X \to C_{\mathbb{F}_p}(X)$ for any X. A space X is \mathbb{F}_p -good if $H_*\epsilon_X$ is an isomorphism and \mathbb{F}_p -complete if ϵ_X is a homotopy equivalence. A map $f: X \to Y$ is an \mathbb{F}_{p} -equivalence if it induces an isomorphism on $H^*(\underline{\ },\mathbb{F}_p)$. If X and Y are spaces then Map(X,Y) denotes the function space of the maps from X to Y; the component containing a particular map or homotopy class f is $Map(X,Y)_f$. If f is a specific map then $Map(X,Y)_f$ is a pointed space with basepoint f. We assume that any space in this paper has the homotopy type of a CW-complex.

This paper is organized as follows.

As a background we give the basic definitions and properties of p-compact groups in section 2. The third section gives the proof of our following main result.

THEOREM 3.6. Let \mathcal{X} be a p-compact group. Let $\mathcal{Y} \to \mathcal{X}$ be a p-compact subgroup of \mathcal{X} and $G \to \mathcal{X}$ be a p-compact toral subgroup of \mathcal{X} with $(\mathcal{X}/\mathcal{Y})^{hG}$ is nonempty. Then the homotopy fixed point set of the homotopy fibre satisfies the cohomological finiteness condition.

2. Preliminaries

In this section we summarize some basic definitions and properties about p-compact groups. We refer to the paper [3], [4] and [8]. Most of constructions are translated from the geometry of classical Lie group theory to the homotopical setting of loop spaces or p-compact groups.

A homomorphism $f: \mathcal{Y} \to \mathcal{X}$ of p-compact groups or loop spaces is a pointed map $Bf: B\mathcal{Y} \to B\mathcal{X}$. A homomorphism f is an equivalence if Bf is a homotopy equivalence and trivial if Bf is null homotopic. A homomorphism of p-compact groups is said to be a monomorphism if the homotopy fibre \mathcal{X}/\mathcal{Y} is \mathbb{F}_p -finite, and an epimorphism if $\Omega\mathcal{X}/\mathcal{Y}$ is a p-compact group. A subgroup $\mathcal{Y} \to \mathcal{X}$ of p-compact group \mathcal{X} is a monomorphism of p-compact groups. A sequence $\mathcal{Y} \to \mathcal{X} \to \mathcal{Z}$ of p-compact groups is short exact if the associated sequence $B\mathcal{Y} \to B\mathcal{X} \to B\mathcal{Z}$ is a fibration up to homotopy. In this case f is a monomorphism, g is an epimorphism and $f: \mathcal{Y} \to \mathcal{X}$ is a normal subgroup.

Two homomorphisms $f,g:\mathcal{Y}\to\mathcal{X}$ of p-compact groups are called conjugate if Bf and Bg are freely homotopic. For a homomorphism $h:\mathcal{Y}\to\mathcal{X}$ of p-compact groups and for a p-compact toral subgroup $i':G\to\mathcal{X}$, we say that G is subconjugate to \mathcal{Y} if there exists a homomorphism $j':G\to\mathcal{Y}$ such that $h\circ j'$ and i' are conjugate.

For a group G, the homotopy fixed point set of the action of G on X, denoted X^{hG} , is G-equivariant mapping space $map^G(EG,X)$. If G acts trivially on X, then X^{hG} is map(BG,X). Let X_{hG} be the Borel construction $EG \times_G X$. Then the space X^{hG} is isomorphic to the space of sections of the fibration $X_{hG} \to BG$. A G-map $f: X \to Y$ induces a map $f^{hG}: X^{hG} \to Y^{hG}$; if f is an ordinary (non-equivariant) homotopy equivalence, then f^{hG} is a homotopy equivalence.

REMARK 2.1. Let G be a loop space. A G-space X is defined to be a fibration $X_{hG} \to BG$ with X as the fibre, and an equivariant map $X \to Y$ to be a map of spaces together with an extension to a map $X_{hG} \to Y_{hG}$ of spaces over BG. The homotopy fixed point set of such an action of G on X is defined to be the space of sections of the fibration $X_{hG} \to BG$. A proxy action of G on X is a space Y which is homotopy equivalent to X together with an action of G on Y.

LEMMA 2.2. [3, 10.6] Let $f: X \to Y$ be a map of G-spaces which is an ordinary (non-equivariant) fibration. Assume that Y is connected, and that the homotopy fibre of f is F. Then the map

$$f^{hG}: X^{hG} \to Y^{hG}$$

induced by f is a fibration. Moreover, for any point $y \in Y^{hG}$ there is a proxy action $\alpha(y)$ of G on F such that the (homotopy) fibre of f^{hG} over g is equivalent to $F_{\alpha(y)}^{hG}$.

A p-compact torus T of rank r is a p-compact group such that BT is an Eilenberg-Mac Lane space of type $K((\mathbf{Z}_p)^r,2)$. A p-compact toral group G is a p-compact group which is an extension of a p-compact torus by a finite p-group. A p-discrete torus $T_{\infty} = \{x \in T \mid x^{p^n} = 1 \text{ for some } n\}$ of rank r is a discrete group isomorphic to $(\mathbf{Z}/p^{\infty})^r$. A p-discrete toral group G_{∞} is a discrete group which is an extension of a p-discrete torus by a finite p-group. Let $f: G_{\infty} \to G$ be a homomorphism where G_{∞} is a p-discrete toral group and G is a p-compact toral group. Then G_{∞} is said to be a discrete approximation to G if Bf is an \mathbb{F}_p -equivalence.

PROPOSITION 2.3. [3, 6.8] Let $f: G_{\infty} \to G$ be a discrete approximation of the p-compact toral group G, and let X be an \mathbb{F}_p -complete space with an action of G. Then f induces a homotopy equivalence $X^{hG} \to X^{hG_{\infty}}$.

PROPOSITION 2.4. [3, 6.9] Any p-compact toral group G has a discrete approximation $G_{\infty} \to G$.

PROPOSITION 2.5. [3, 6.10] Any p-discrete toral group G_{∞} has a (functorial) closure $G_{\infty} \to Cl(G_{\infty})$.

REMARK 2.6. If G_{∞} is a p-discrete toral group then the homotopy fibre of the map $BG_{\infty} \to BCl(G_{\infty})$ is the same as the homotopy fibre $K((Q_p)^r, 1)$ of the completion map $BA \to C_{F_p}(BA)$ where A is isomorphic to $(Z/p^{\infty})^r(r \geq 0)$ such that G_{∞}/A is a finite p-group. By obstruction theory this implies that if K_{∞} is a p-discrete toral group then any homomorphism $K_{\infty} \to Cl(G_{\infty})$ lifts up to conjugacy to a homomorphism $K_{\infty} \to G_{\infty}$.

For a homomorphism $f: \mathcal{Y} \to \mathcal{X}$ between p-compact groups, we define the centralizer $C_{\mathcal{X}}(f(\mathcal{Y}))$ (or $C_{\mathcal{X}}(Y)$ if f is understood) to be the loop space given by the triple $(\Omega map(B\mathcal{Y}, B\mathcal{X})_{Bf}, map(B\mathcal{Y}, B\mathcal{X})_{Bf}, id)$. The evaluation at the base point $ev: map(B\mathcal{Y}, B\mathcal{X})_{Bf} \to B\mathcal{X}$ establishes a homomorphism $C_{\mathcal{X}}(\mathcal{Y}) \to \mathcal{X}$ of loop spaces. If \mathcal{Y} is a p-compact toral group, then the centralizer $C_{\mathcal{X}}(\mathcal{Y})$ is again a p-compact group and the evaluation $C_{\mathcal{X}}(\mathcal{Y}) \to \mathcal{X}$ is a monomorphism. A subgroup $\mathcal{Y} \to \mathcal{X}$ of a p-compact group \mathcal{X} is called central if the monomorphism $C_{\mathcal{X}}(\mathcal{Y}) \to \mathcal{X}$

is an equivalence. For every p-compact group \mathcal{X} , the centralizer $C_{\mathcal{X}}(\mathcal{X})$ is a p-compact group and $Z(\mathcal{X}) := C_{\mathcal{X}}(\mathcal{X}) \to \mathcal{X}$ is the center of \mathcal{X} . The center $Z(\mathcal{X})$ of \mathcal{X} is the maximal central subgroup of $\mathcal{X}([3], [6])$. A p-compact group \mathcal{X} is abelian if the identity homomorphism of \mathcal{X} is central.

3. Homotopy Fixed Point Set of the Homotopy Fibre

Let $i: H \to \mathcal{X}$ and $j: K \to \mathcal{X}$ be p-compact toral subgroups of p-compact group X. If there exist homomorphisms $f: H \to K$ and $g: K \to H$ such that $j \circ f \sim i$ and $i \circ g \sim j$, then we say H is conjugate to K in \mathcal{X} .

Let $H \to \mathcal{X}$ be a p-compact toral subgroup of a p-compact group \mathcal{X} . We define the Weyl space $\mathcal{W}_H(\mathcal{X})$ to be the space obtained by replacing $BH \to B\mathcal{X}$ by an equivalent fibration $BH' \to B\mathcal{X}$ and considering the space of self maps of BH' over $B\mathcal{X}$. If we assume that $BH \to B\mathcal{X}$ is already a fibration then $\mathcal{W}_H(\mathcal{X})$ is defined to be the space of self maps of BH over $B\mathcal{X}$. Then the composition of maps gives $\mathcal{W}_H(\mathcal{X})$ the structure of an associative topological monoid.

LEMMA 3.1. Let \mathcal{X} be a p-compact group and $i: H \to \mathcal{X}$ a p-compact toral subgroup of \mathcal{X} . Then any self map of BH over $B\mathcal{X}$ is a homotopy self equivalence of BH.

Proof. Let $j: H_{\infty} \to H$ be a discrete approximation to a p-compact toral group H. By Remark 2.6, any map $f: BH \to BH$ over $B\mathcal{X}$ lifts to a map $\tilde{f}: BH_{\infty} \to BH_{\infty}$, i.e., to a homomorphism $f_{\infty}: H_{\infty} \to H_{\infty}$ over H. The homomorphism $i \circ j$ must have a trivial algebraic kernel since $H \to \mathcal{X}$ is a monomorphism. Now H_{∞} is a p-discrete toral group, and hence it has an extension

$$1 \to T_{\infty} \to H_{\infty} \to W \to 1$$

where $T_{\infty} \approx (Z/p^{\infty})^r$, for some r, is a p-discrete torus and W is a finite p-group. We consider the following commutative diagram

Any monic self map g_{∞} is an isomorphism and right vertical map h is also isomorphic. It follows f_{∞} is an isomorphism. Since H_{∞} is a discrete approximation to H, $Bj: BH_{\infty} \to BH$ is \mathbb{F}_p -equivalent. Thus it induces f is a self homotopy equivalence since BH is also \mathbb{F}_p -complete.

Lemma 3.1 implies that $\pi_0(\mathcal{W}_H(\mathcal{X}))$ is a group under composition. The group $\pi_0(\mathcal{W}_H(\mathcal{X}))$ is called Weyl group of H in \mathcal{X} and we denote it by $W_H(\mathcal{X})$.

If $i: Y \to X$ and $f: G \to X$ are homomorphisms of loop spaces, then taking the homotopy pullback of $Bi: BY \to BX$ along Bf gives an action in the sense of Remark 2.1 of G on X/Y. The homotopy fixed point set of this action is denoted by $(X/Y)^{hf(G)}$, or $(X/Y)^{hG}$ if f is understood.

PROPOSITION 3.2. [3, 6.22] Let \mathcal{X} be a p-compact group, G a p-compact toral group and $f:G\to\mathcal{X}$ a homomorphism. Then there exists a finite p-group A and a homomorphism $A\to G$ such that the restriction map $C_{\mathcal{X}}(G)\to C_{\mathcal{X}}(A)$ is an equivalence.

COROLLARY 3.3. Let \mathcal{X} be a p-compact group, G a p-compact toral group and $f: G \to \mathcal{X}$ a homomorphism. If $\mathcal{Y} \to \mathcal{X}$ be a p-compact subgroup of \mathcal{X} and $(\mathcal{X}/\mathcal{Y})^{hG}$ is nonempty, then there is a finite p-group A such that the restriction $C_{\mathcal{Y}}(G) \to C_{\mathcal{Y}}(A)$ is an equivalence.

Proof. If $(\mathcal{X}/\mathcal{Y})^{hG} \neq \emptyset$, then there is a section $s: BG \to (\mathcal{X}/\mathcal{Y})_{hG}$ since $(\mathcal{X}/\mathcal{Y})^{hG}$ is the space of sections of the fibration $(\mathcal{X}/\mathcal{Y})_{hG} \to BG$. The homotopy pullback of $B\mathcal{Y} \to B\mathcal{X}$ along Bf gives an action of G on \mathcal{X}/\mathcal{Y} . This induces a map $(\mathcal{X}/\mathcal{Y})_{hG} \to B\mathcal{Y}$. Then the composition of this map with s gives a homomorphism $G \to \mathcal{Y}$. Hence we apply the Proposition 3.2 to a p-compact group \mathcal{Y} .

PROPOSITION 3.4. [3, 5.8] Suppose that \mathcal{Y} and \mathcal{X} are p-compact groups, that A is a finite p-group acting on $B\mathcal{Y}$ and $B\mathcal{X}$ (not necessary in a base point preserving way), and that $f: B\mathcal{Y} \to B\mathcal{X}$ is an equivariant map. For each $x \in (B\mathcal{X})^{hA}$ let $\alpha(x)$ be the proxy action of A on \mathcal{X}/\mathcal{Y} . Then for each x, the space $(\mathcal{X}/\mathcal{Y})^{hA}_{\alpha(x)}$ is \mathbb{F}_p -complete.

THEOREM 3.5. [3, 4.6] Let Z be a space with an action of the finite p-group A. Assume that Z is \mathbb{F}_p -finite and that for each subgroup $F \subset A$, Z^{hF} is \mathbb{F}_p -complete. Then Z^{hA} is \mathbb{F}_p -finite.

THEOREM 3.6. Let \mathcal{X} be a p-compact group. Let $i: \mathcal{Y} \to \mathcal{X}$ be a p-compact subgroup of \mathcal{X} and $j: G \to \mathcal{X}$ be a p-compact toral subgroup of \mathcal{X} with $(\mathcal{X}/\mathcal{Y})^{hG}$ is nonempty. Then $(\mathcal{X}/\mathcal{Y})^{hG}$ is \mathbb{F}_p -finite.

Proof. There exists a finite p-group A and a homomorphism $k:A\to G$ such that the restriction $C_{\mathcal{X}}(G)\to C_{\mathcal{X}}(A)$ is an equivalence by Proposition 3.2. Thus $BC_{\mathcal{X}}(G)$ is homotopy equivalent to $BC_{\mathcal{X}}(A)$ for such A. Also $BC_{\mathcal{Y}}(G)\simeq BC_{\mathcal{Y}}(A)$ by Corollary 3.3. Now the homotopy pullback of $Bi:B\mathcal{Y}\to B\mathcal{X}$ along the map $id:B\mathcal{X}\to B\mathcal{X}$ gives an action of \mathcal{X} on \mathcal{X}/\mathcal{Y} . This implies that $\alpha:(\mathcal{X}/\mathcal{Y})_{h\mathcal{X}}\to B\mathcal{Y}$ is homotopy equivalent. Hence the maps between mapping spaces $map(BG,(\mathcal{X}/\mathcal{Y})_{h\mathcal{X}})_{\beta\circ B_{\mathcal{I}}^{\mathcal{I}}}\to map(BG,B\mathcal{Y})_{B_{\mathcal{I}}^{\mathcal{I}}}(\simeq BC_{\mathcal{Y}}(G))$ and $map(BA,(\mathcal{X}/\mathcal{Y})_{h\mathcal{X}})_{\beta\circ B_{\mathcal{I}}^{\mathcal{I}}}\circ Bk\to map(BA,B\mathcal{Y})_{B_{\mathcal{I}}^{\mathcal{I}}\circ Bk} (\simeq BC_{\mathcal{Y}}(A))$ are homotopy equivalences, where $\tilde{\mathcal{I}}:G\to\mathcal{Y}$ and $\mathcal{I}:B\mathcal{Y}\to (\mathcal{X}/\mathcal{Y})_{h\mathcal{X}}$ such that $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}$ and $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}$ such that $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}$ and $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}$ and $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}$ such that $\mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}\to \mathcal{I}:B\mathcal{Y}:$

The homotopy fibres of the vertical maps are $(\mathcal{X}/\mathcal{Y})^{hG}$ and $(\mathcal{X}/\mathcal{Y})^{hA}$ respectively. Therefore $(\mathcal{X}/\mathcal{Y})^{hG}$ is homotopy equivalent to $(\mathcal{X}/\mathcal{Y})^{hA}$. By Proposition 3.4, $(\mathcal{X}/\mathcal{Y})^{hF}$ with proxy action is \mathbb{F}_p -complete for each finite subgroup $F \subset A$. Since \mathcal{X}/\mathcal{Y} is \mathbb{F}_p -finite, $(\mathcal{X}/\mathcal{Y})^{hA}$ is \mathbb{F}_p -finite by Theorem 3.5. Thus we conclude $(\mathcal{X}/\mathcal{Y})^{hG}$ is \mathbb{F}_p -finite.

References

- A. K. Bousfield and D. K. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304 Springer-Verlag, Berlin, 1972.
- [2] T. tom Dieck, Transformation Groups, De Gruyter Berlin-New York, 1987.
- [3] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), 395-442.

Hyang - Sook Lee

- [4] _____, The center of a p-compact group, Contemp. Math. 181 (1995), Amer. Math. Soc., providence.
- [5] H. R. Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math. 120 (1984), 39-87; and corrigendum, Annals of Math. 121 (1985), 605-609.
- [6] J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. reine. angew, Math. 456 (1994), 99-133.
- [7] D. Notbohm, Unstable splittings of classifying spaces of p-compact groups, Quarterly J. of Math. (to appear).
- [8] _____, Classifying spaces and finite loop spaces, Handbook of algebraic topology, (1995), 1049-1094.
- [9] D. L. Rector, Subgroups of finite dimensional topological groups, J. Pure. Appl. Algebra 4 (1971), 253-273.
- [10] E. Spainer, Algebraic Topology, Mcgraw-Hill book company, 1966.

DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEODAEMOON-KU, SEOUL 120-750, KOREA

E-mail: hsl@mm.ewha.ac.kr