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A STUDY ON REIDEMEISTER OPERATION

SeEouNnG Ho LEE

ABSTRACT. L. Degui introduced an upper bound of Reidemeister
number. In this paper we give a simple proof of Degui’s Theorem.

1. Introduction

All spaces considered here will be connected compact polyhedra and
thus admit their universal covering spaces.
Let f : X — X be a given self-map and p : XX the universal

covering projection of X. A lifting of f is a map f : X-X such that
the diagram commutes

¥ —L1.%

|

X I, X
Two liftings f and f " of f are said to be conjugate if there exists v € mx
such that f' = ~yo f oy~ ! where 7x is the group of covering translations
of X. The equivalence classes by conjugacy are called lifting classes of
f, denoted by [f] = {yo foy !}y € mx}. The number of lifting classes

of f is called the Reidemeister number of f, denoted by R(f). A lower
bound of R(f) has been obtained in [9,10] as follows:

|Coker(1 — f1.)| < R(f)

where fi. : Hi(X) — H;(X) is the homomorphism induced by f and
H,(X) is the 1-dimensional homology group of X.

Received August 25, 1998.
1991 Mathematics Subject Classification: 55M20.
Key words and phrases: Reidemeister operation; exact sequence.



Seoung Ho Lee

In [2, Theorem 3|, L. Degui obtained an upper bound of R(f) as
follows:

R(f) < |Coker(1 — f1.)||H|

where H is the commutator subgroup of the fundamental group 7 (X).

The purpose of this paper is to present a simple proof of Theorem 3
in [2] and Theorem 1 in [12] using the theory of P. R. Heath [3]. We
work only with the fundamental group and the universal covering space
rather than with the fundamental group, the universal covering space
and the regular covering spaces.

In this first section we define the Reidemeister operation of a pair
of homomorphisms and prove some of its algebraic properties. In the
second section we give a simple proof of Degui’s Theorem.

2. The Reidemeister Operation of a Pair of Homomor-
phisms

Let G,G’ be groups and f,g : G — G’ a pair of homomorphisms.
‘We write composition in groups additively.

DEFINITION 2.1. The Reidemeister operation of (f,g) is the left ac-
tion of G on G’ given by

(@,8) > f(a) + B — gla).

Let f — g : G — G’ denote the function defined by (f — g)(a) =
f(a@) — g(a); then by a slight abuse we write the set of orbits of the
operation as Coker(f — ¢) with elements [¢/] for o/ € G’ (cf. [3,12]).
We observe that if j : G —Coker(f — g) denote the quotient function
defined by j(a’) = [@/], then j(&/) = j(F’) if and only if thereisay € G
with o/ = f(y) + 8’ — g(7), and there is then an exact sequence (with
the obvious base points)

(2.2) O——><I>(f,g)—+Gﬂ>G’1>Coker(f—g)—»O,

of groups and based sets, where ®(f, g) is the subgroup of G consisting
of those a for which f(a) = g(a). Note that since f — ¢ need not be
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“a homomorphism, Coker(f — g) need not be the quotient of G’ by a
subgroup. '

The order §Coker(f — g) of the orbit set is called the Reidemeister
number of (f,9) on G’ and is written R(f, g).

PROPOSITION 2.3. If G’ is abelian, f — g is a homomorphism and
Coker(f — g) has a canonical group structure in thch j is a homomor-
phism.

Proof. Define an operation on Coker(f — g) by
]+ 8] = [ + 8]
Let [@/] = [@}] and [0'] = [B]]. Then there exist 7,7 such that of =
F() + < —g(v), 8y = f(m)+ B — g(m1). Since G’ is abelian,

[0y + B8] = [f(0) + 07 — 7)+f(71)+ﬂ’—9('n)]
=[fly+m)+ (& +8) - g9lv +m)]

=[o/ + ]
Thus the operation * is well-defined. It is easy to show that Coker(f—g)
has a canonical group structure and j is a homomorphism. 0

LEMMA 2.4. Foralla € G, € G, [f(e) + B'] = [B' + 9(a)]. In
particular [f(a)] = [g(e)] for alla € G.

Proof. [f(e) + B'] = [f(=a) + (f(a) + B') = 9(—a)] = [B' + 9(e)].00
" We consider next the naturality of Reidemeister operations of pairs.

Suppose we are given a commutative diagram of groups and homomor-
phisms

0 H-2.0¢ 2.0 ) 0
(2‘5) f|H;g|HJ' f,gl f:g
0 (A AN e 0

in which the rows are exact and f|p, g are the restrictions of f, g to H.
Then g restricts to a homomorphism ¢ : ®(f,g) — ®(f,J) also denoted
by ¢: further ¢’ induces a function ¢, :Coker(f — g) —Coker(f — g) in
the obvious way. Thus we have
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THEOREM 2.6. In the above situation there is an exact sequence

0~ &(fl,glu) = B(f,9) > &(f,5) % Coker(f| — gl)
%, Coker(f — g) o, Coker(f —g) — 0
of groups and based sets in which ¢ is given by
8(a) = [f(a) — g(a)] where g(a) = &.
Furthermore, if G’ is abelian, then the sequence can be regarded as an

exact sequence of groups.

Proof. The result can be proved by arranging sequences of the form
of 2.2 for f|g —g|u, f—g, f — § on a grid and using those of type 2.5 to
connect them. First we show that Imj, =Kerq,. Since ¢.j.([h]) = [0],
we have Imj, CKerq,. Conversely, if ¢.([a’]) = [0], then there exists
&1 € Gsuchthat 0 = f(&1)+¢'(¢/)—§(@1), and ¢'(f(1)+a’ —g(a1)) =
0, there exists h’ € H' such that j/(k') = f(a1) + @ — g(a1), ; that is,
Ju([P']) = [f(er) + &' — g(a1)] = [@']. Thus we have Kerq, < Imj.. The
other terms fall out easily. Furthermore, if G’ is abelian, then H’ and
G’ are abelian. Using Proposition 2.3, the sequence can be regarded as
an exact sequence of groups (see Ker-Coker Sequence in [13]). O

The function ¢ :Coker(f — g) —Coker(f — g) in Theorem 2.6 is
surjective so

(2.7) |Coker(f - §)| < R(f,9).

If f is the identity homomorphism, we have the same result of [3].

COROLLARY 2.8 [3]. There exists an exact sequence
0 — 2(glm) — 2(g) > &(g) > Coker(1 — gln)
2, Coker(1 — g) %5 Coker(1 —g) — 0
of groups and based sets in which § is given by
d(a) = [a — g(a)] where g(a) = a.
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Furthermore, if G’ is abelian, then the sequence can be regarded as an
exact sequence of groups.

Let o/ € G', then the Reidemeister operation of (f, g) on H’ induces
an operation(on the left) of H on H' + ¢/ by restriction, i.e., H x (H'+
o') — H' 4 o defined by (h, k' + o') = fla(h) + (k' + o') — glu(h).
Since ¢'(f(h) + k' + o' — g(h) — &') = D, this action is well-defined. Let
Orb(H’ + ') denote the orbits of this operation with elements [k’ + o]
for k' € H’, then the inclusion of H' into G’ induces a function

Ji : Orb(H' + &) — Coker(f — g)

defined by [k’ + /] — [J'(K') + &].

PRrROPOSITION 2.9. In the above situation we have
Ju(Orb(H' + o)) = ¢/, (di([])).

Proof. Fisst, since .. (K +/]) = [¢/7 () +¢'(&/)] = ¢.([e/]), then
we have jL(Orb(H’' + o)) € ¢’ (¢.([])). Conversely, if ¢.([8']) =
q.([@']), then we show that [8'] = [§'(h’) + ¢/] for some h' € H'. Since
[3'] = [&], there exists ¥ € G such that ' = f(7) + & —~ §(7). But
g (B = (f(v)+o —g(v)) = 0, and by the exactness, there exists k' € H’
such that j/(k') = 8’ — (f(7) + &/ — g(v)). Thus by Lemma 2.4, we get

B ="k + f(v) + & ~ g(7)]
= [f(=7) + 7' (k) + f(7) + ]
= [j'(K) + o] for some ' € H'. 0

COROLLARY 2.10. R(f,g) < |H'||Coker(f — g)|-

Proof. Since ¢', *(q.([’])) < |Orb(H’ + /)| < |H’|, we get the con-
clusion. : O

We are now ready to compare the Reidemeister number of homomor-
phisms f,g : G — G’ with the Reidemeister number of H(f), H(g) :
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H(G) — H(G') where H is the abelianization functor from groups to
abelian groups. For any group G the sequence

(2.11) 0—H—GHG) -0

is exact (see for example [4; p. 55, 9.2(8)]) where H is the commutator
subgroup of G and 1} is a natural projection. Moreover, there is a
commutative diagram of groups and homomorphisms

0 . H 2. ¢ 5 HG — 0
(212) flasala | ra|  HHG)|
0 H L Y HEG) —— 0

where H' is the commutator subgroup of G’. Thus by Theorem 2.6

PROPOSITION 2.13. We get an exact sequence as follows:

0 — &(f|a, gla) — ®(f,g) > S(H(f), H(g)) > Coker(f|u — gln)
%%, Coker(f — g) ™ Coker(H(f) — H(g)) — 0

By (2.7) and Corollary 2.10, we have

COROLLARY 2.14. |Coker(H(f) — H(g))| < R(f,g) < |H'||Coker
(H(f) - H(9))l-

If f is the identity homomorphism, we have

COROLLARY 2.15. |Coker(1—H(g)) < R(g) < |H||Coker(1—H(g))|.

3. Reidemeister Number of a Pair of Continuous Maps

Let f,9: X — Y be a pair of maps. Fix universal coverings P : X —
X,Q:Y — Y. Denoted by mx := m1(X),my := m(Y) the groups of
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natural transformations of XandY respectively. Let lift(f, g) be the set
of all pairs of liftings (£, §) for which the following diagram commutes

5 %) %
(3.1) Pl lQ

Two lifting pairs (f, §) and (f7, ¢’) are said to be conjugate if there exists
v € mx and 4’ € my such that (f/,¢") = ¥'o(f,§)oy™ . The equivalence
classes by conjugacy are called lifting classes of (f,g) on Y and the
lifting class of (f,§) is denoted by [f,§] = {¥ o (f,§)ov "y € 7x,7 €
7y }. The number of lifting classes of (f,g) is called the Reidemeister
number of (f,g), denoted R(f,g) (see [6,8,11,12]).

Let (f,§) be a reference lifting of (f,g) corresponding (w) where w
is a path from f(zp) to g(xz¢). The Reidemeister operation of (f,g) is
the left action of mx on my given by

(v, &) = fr() + & = gx(7)

where fr is the induced homomorphism of f, w, is the isomorphism
- induced by the path w and gr = w. o gr (see [7,12]).

THEOREM 3.2 [12]. The lifting classes of (f, g) are in 1-1 correspon-

dence with orbits in my, the lifting class [f,a’ o g corresponding to the
(@] € Coker(fr — gn)-

Then we have

(3.3) R(f,9) = R(fx,gn)-

By [5], we have an exact sequence

0— H L m(X,z0) S Hy(X) =0
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where H is the commutator subgroup of m(X,z¢). Furthermore, by
[9; p. 45 Lemma 1.13] we have a commutative diagram as follows:

T (X,20) 8 (Y, f(xo))
(3.4) ol le’
Hy(x) L2990 gy

Thus 6 is an abelianization functor. By Proposition 2.13, we have

PROPOSITION 3.5. There is an exact sequence as follows:

0 — (frlpr, Grltr) = ®(frr Gr) > B(fin, 910) > Coker(frler —finlrr)

2 Coker(fr — ) % Coker(fix — g1+) — 0

By Corollary 2.14 and (3.3), we have

COROLLARY 3.6 [12]. |Coker(fi.—g1+)| < R(f,g) < |H'||Coker(f1.
—g1+)| where H' is the commutator subgroup of m1(Y, f(xo)).

If f is the identity map, then

COROLLARY 3.7 [2]. |Coker(1— g1.)| < R(g) < |H||Coker(1 — g1.)|
where H is the commutator subgroup of m (X, g(xo)).
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