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LAYER OSCILLATIONS IN A FREE BOUNDARY
PROBLEM WITH PUSHCHINO DYNAMICS
SATISFYING THE DIRICHLET BOUNDARY

CONDITION

YOONMEE HAM

ABSTRACT. In this paper, we consider a free boundary problem with

Pushchino dynamics satisfying the Dirichlet boundary condition. We

shall show the stationary solutions (v*{(z),s*) exist and the Hopf
- bifurcation occurs at a critical point 7 when s* € (1/3,1).

1. Introduction

In [5], they showed the existence of the Hopf bifurcation in a free
boundary problem with the Pushchino dynamics satisfying the Neumann
boundary conditions. In this paper, we shall consider this free boundary
problem which satisfy the Dirichlet boundary condition at the boundaries

in z-axis:

(L.1)
vy = Dugy — (1 +b)v + ¢y H(z — s(t)) for (z,t) € Q- UQT,
v(0,t) = 0 = v(1,¢) ' for t >0,
v(z, 0) = vo(x) ' for 0<z <1, ‘
T%; = C(v(s'(t),t)) for ¢t > 0,s(0) = sy,
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where Q@ = (0,1) x (0,00), 2~ = {(z,t) € 2 : 0 < z < s(t)} and
QF = {(z,t) € Q: s(t) < z < 1} and, in addition, v(z,t) and v,(z,t)
are assumed continuous in Q. The diffusion constant D is assumed to be
finite (so, let D = 1) and H(y) is the Heaviside function. By the bistable
assumption, a constant b must satisfy —c; < b < 9—2?%‘) with0<a<ec.
The velocity function of a free boundary is

a cp —a
)
¢+ ¢ Cl+02

C:I—»R;I:z(— ), O<a<q

and given by
2(c; + ) v — (a1 — 2a)

\/(fll;—:z - v) (v + c1icz)
In section 2, we shall state the well-posedness of (1.1) by using use
a change of variables and gives enough regularity of the solution for an

analysis of the bifurcation. In section 3, we show that a Hopf bifurcation
occurs at a critical value of 7 as 7 decreases.

Cv) =

2. The Well-posedness

The problem (1.1) may be written by sn abstract evolution equation:

(F) { %(U’ s) + A(v, ) = F(v,s)
(v,5)(0) = (wo("), 50)

d?
A= —@%’(Cl-{—b) 0
0 0

and the nonlinear operator F' by

Fi(v(-,1), s(2)) e H(- — 5(t))
F(v,s) = ( = .

where

Fy(w(-,2), () L o), 1)
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Layer oscillations with Pushchino dynamics satisfying the Dirichlet condition

d2
We let the differential operator A = ~7 +(c1 +b) together with Dirich-

let boundary conditions v(0) = v(1) = 0. The combination of the jump -
discontinuity of a Heaviside function in the first component of F and the
nature of the dependence of v on s in the second component of F' makes
it impossible to find a function space of the form X = L,, 1 <p < o0

such that F satisfies a Lipschitz condition on X C X xR. As a first
step we obtain more regularity for the solution by semigroup methods,
considering A as a densely deﬁi_led operator

A: D(A) Cdense X —X
X := Lo((0, 1)) with norm || - ||2.
D(A) := {v e H**(0,1) : v(0) =0=1v(1)}.

Since H(- — s) is not regular enough, it is impossible to get differential
dependence on initial conditions that is needed for an application of the
Hopf bifurcation theorem.

We now decompose v in (F) into a part u, which is a solution to a
more regular problem, and a part g, which is worse, but explicitly known
in terms of the Green’s function G of the operator A.

PROPOSITION 2.1. Let G : [0,1]2 — R be a Green’s function of the
operator A. Define g : [0,1]> — R :
1
9(@,s) == / Gz, y) dy = A~ (e H(- - 5))(2)

andy:[0,1] — R

Y(s) :=g(s,s).
Then g(-,s) € D(A) for all s, %(m, s) = —¢; G(z, s) is in HH®((0,1) x
(0,1)), and y € C([0, 1]).

Proof. Everything follows from the fact that G is in H® and C*™ on
either {z < y} or {z >y}, and that H(- — s) € L% ]

Using these preliminary observations, we decompose a solution (v, s)
of (F) into two parts by defining

u(t)(x) == v(z, t) — gz, 5(t)) .
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We denote the space X x R by X and define
D(A):=D(A) xR,
A D(A) Cyense X — X, Ay, s) := (Au, 0)
The initial value problem for (u, s) can then be written as

® { 2 (w,9) + A, ) = - f(w9)
(1,9)(0) = (u(0),(0)) = (v0,50).

The nonlinear reaction terms f is defined on a set
W= {(u,s) € C([0,1)) x (0,1) : u(s) +¥(s) € I} Copen c'([0,1])) x R
and given by
f: W — Ly(0,1) xR,
{ £9)- o, 9)
f(u’ 3) T ( f2(u7 s) )

where fi(s) = ¢; G(-, 5) and fa(u, s) = C(u(s) +~(s)). The advantage of
(R) over (F) is, that the right hand side of (R) is one step more regular
than that of (F), since it involves G(z,s) instead of H(z — s). More
precisely, we can show the following (refer to [5]):

LEMMA 2.2. The functions f : W — X is continuously differentiable
with derivatives given by

0
fits) = @ a—‘j(-,s>

Dfy(u,s)(@,8) = C' (u(s)+7(s)) - (v'(s)8+ ()8 +i(s))
Df(uv S)('&: §) = f2(u’ 3) ’ (f{(s)’ 0) 5§+ DfZ(u’ 3)('&" §) ' (f1(3), 1) .

We can now apply semigroup theory to (R) using domains of fractional
powers a € [0,1] of A and A:
X*:=D(A%), X*:=D(A*), X*=X"xR.
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Layer oscillations with Pushchino dynamics satisfying the Dirichlet condition

For this we need to find an a € (0, 1) such that X* C C*([0,1}), because

then f : WnN X - X is continuously differentiable. Theorem 1.6.1 in
[3], for example, ensures that this is the case for o > 3/4. Standard appli-
cations of theorems for existence, uniqueness and dependence on initial
conditions (cf. [3]) together with the starting regularity of solutions to
(F) as well as the regularity of the functions g and v (Proposition 2.1)
then give the following result:

THEOREM 2.3. i) For any 3/4 < a < 1, (ug,s9) € W N X* and
T € R there exists a unique solution

(’LL, 3)(t) = (U, S)(t; Uy, S0, T)
of (R). The solution operator
('LL(), S0, T )H (u 3)(t Uy, So, T)

is continuously differentiable from X" X R into X® fort > 0. The
functions v(z,t)

v(z, ) = u(t)(e) + 9(z (1))
and s then satisfy (F) with v(-,0) € X<, v(s,0) € I.

ii) If (v, s) is a solution of (F) for some 7 € R with initial condition
vg € X%, 1> a > 3/4, s € (0,1), vo(s0) € I, then (uo,so)
(v — g(-, xo) s0) € X*N'W and

(v(-,1), 5(t)) = (u, 8)(t; o, 50,7) + (9(:, 5(1)), 0)

where (u, s)(t; ug, So, T) is the unique solution of (R).
iii) Forany1>a >3/4, 7€ R, (v, 8) € U := {(v,s) € X* x (0, 1)
v(s) € I} the problem (F) has a unique solution

(v(z, 1), s(t)) = (v, s)(z, t;vg, S0, T) .
Additionally, the mapping
(ve, S0, T) — (v, $){:, t; Vo, 50, T) |
is continuously differentiable from X% x R? into X® x R.
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3. A Hopf Bifurcation
In this section, we shall show the Hopf bifurcation occurs for some 7.
The stationary problem, corresponding to (R) by
Au* = %G’(a:, s*)C(u*(s*) +v(s")), u*(0) =0 =u*(1)

0= 1 O () +7(s")

for (u*,s*) € D(A) N W. The function y(s) = ¢ /1 G(s,y) dy then
becomes °

v(s) = 1D siilh(cl 5 sinh ((c; + b) s) (cosh ((er +b)(1 —s)) - 1) .
For 7 # 0, this system is equivalent to the pair of equations
(3.1) u'=0, C(y(s*))=0.

We thus obtain

-9 2sinh® &0

PROPOSITION 3.1. If 0 < 5255 < —und—s , then (R) has a

unique stationary solution (0,s*) for all 7 # 0 with s* € (0,1). The
linearization of f at (0, s*) is

4(01 + C2)

43}

Df(0,5')(4,8) = (a(s") +7(58) - (@ G(,59,1) -
The pair (0, s*) corresponds to a unique steady state (v*,s*) of (F) for
T # 0 with

v*'(z) = g(z,s).

Proof. We note C(r) = 0 iff r = ;2% We define I'(s) := ~(s) —

2(c1+¢2)

ﬁ;—r"c“Q—).ThenF’(s)>0if0<s<§andl"’(s)<0if%<s<1. The

equation I'(s) = 0 have solutions for s if I'(0) < 0 < I'(3) or (1) < 0 <

.. . c1—2a ' 2sinh3 4
I'(3). This implies that 0 < ﬂcllf_cz) < 7(3) with y(3) = EEET TR
Thus, there exists solutions s* € (0,1).

The formula for Df(0, s*) follows from Lemma 2.2 and the relation

C,(Q(cil_'f;)) - 4(61;02) and thus we now define a new parameter p =
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Layer oscillations with Pushchino dynamics satisfying the Dirichlet condition

4_(%1_‘:2_). The corresponding steady‘state (v*, s*) for (F) is obtained using
Theorem 2.3. O

In order to show the occurrence of Hopf bifurcations at some u* in
(R), we must show the stationary solution (u*(z), s*, u*) is a Hopf point
and then there is a periodic solution near the stationary point by the
Hopf bifurcation theorem-in [1] and [5]. We introduce the definition of
Hopf points.

DEFINITION 3.2. Under the assumptions of Proposition 3.1, define
(for 1 > a > 3/4) the operator B € L{X*, X)
a1
B:= ———Df(0,s").
4(c; + ¢2) 10,5
We then define (0, s*, u*) to be a Hopf point for (R) if and only if there
exists an €y > 0 and a Cl-curve

(—€0 + p", 1" + €0) > (M), p(w)) € C x Xc
(Yc denotes the complexification of the real space Y') of eigendata for
—A+ uB with
i) (~A+pB)(¢(n) = Mp)d(w), (—A+uB)d(p) = M) ¢(n);
ii) A(p*) = ¢8 with g > 0; '
i) Re()) # 0 for all A € o(—A + p*B) \ {iB};
iv) Re X' (p*) # O (transversality).

We now check (R) for Hopf points. For this we have to solve the
eigenvalue problem
—A(u, s) + pB(u, s) = My, s)
which is equivalent to
(A+XNu = p-(Y(s)s+u(s")) o G(-,s*)
As = p-(y'(s*)s +u(s?)).

‘We now shall show that there exists a unique, purely imaginary eigen-
value A = 103 of (3.2) with 8 > 0 for some p* in order for (0, s*, u*) to be a
Hopf point. As a first result, we show the (0, s*, u*) satisfy the condition
of (i) and (ii) in the Definition 3.2.

(3.2)
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LEMMA 3.3. Assume that the operator —A + p*B has a unique pair
{£iB} of purely imaginary eigenvalues for p* € R\ {0}. Suppose that
¢* be the (normalized) eigenfunction corresponding to the eigenvalue if3.
Then there exists a C'-curve pu — (¢(), A(n)) of eigendata such that

¢(p*) = ¢* and A(w*) = 103.

The proof is similar to the proof in [5].

It remains to show the transversality and so, we shall use the Fourier
sine transformation for the linearized eigenvalue problem of (F). We let
v =1u—¢; G(:,s*) then we have the linearized eigenvalue problem of (F)
which is represented by

(3.3) (A+ XNv = —c18s, v(0) =0 =v(1)
and
(3.4) A=pt- ((v*)'(s*) + v(s*)).

The next lemma gives the solution of (3.3):

LEMMA 3.4. The solution of (3.3) is obtained by

sin(kms*)
= —22 P+ (c + B 1A sin(kmz).

Proof. If we take a Fourier sine transformation of (3.3) then we obtain

/01 (327; ((c1 +b)% + A sm(kmc)) dr = ¢ / ds+ sin(kmz) dz.

Let c¢(k) be the Fourier coefficient of v, given by
1
c(k) = / v(z) sin(krz)dz
0
Thus, we obtain the solution of (3.3)

v(z) = )+ 22 ) sin(kmz)

| sin(kms*) .
= —2¢ Z ) + (o + )TN sin(kmz).
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We now show (0, s*, 1*) is a Hopf point.

THEOREM 3.5. Assume that for u* € R\ {0} the operator —A+ u*B
has a unique pair {%if3} of purely imaginary eigenvalues. Then (0, s*, u*)
is a Hopf point for (R).

Proof. The equation (3.4) may be written by

’ A * * * *
(35) ;;:(’U ),(S )—ClG,\(S y S )
where —-G)\(z, s*) is a Green’s function of ——;f;zg + (¢ + b)? + X satisfying
the Dirichlet boundary condition in (3.3). If we take a derivative the
equation (3.5) with respect to u and evaluate at u*, then we have

: n) - 8
(3.6) N(u )( +cl——G(ﬂ(s s)) o
dA
We now calculate the real part of E/;(u*). Let
dA, _ dx,
@ = Re(T00). b= (),

c = Re(d/\Gg(s s)) and d = Im(%Gﬁ(s*,s*)).

Substituting these values into (3.6), we obtain

(a+ zb)( +c e+ zd)) B

( *)Z'

The real part a of 32("'*) is given by

G
a = Re (—-(# )) ( +q 52 + (¢; d)?

and
d = 1m(LG(s,5)(w)
= 1lm d\ ﬁ(s AV :

— (km.)z cl + b) : ' *
= 48 Z YT DY (sin kms*)?.
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Therefore, we have the transversality condition
dx, ,

. Therefore, by the Hopf-bifurcation theorem in [5], there exists a family
of periodic solutions which bifurcates from the stationary solution as u
passes u*. |

We now show the existence and uniqueness of pure imaginary eigen-
values, and the critical point u*.

THEOREM 3.6. There exists a unique, purely imaginary eigenvalue
A = if of (3.2) with B8 > 0 for a unique critical point p* in order for
(0, s*,4*) to be a Hopf point with } < s* < 1.

Proof. We need to find a point u such that the linearized eigenvalue
problem (3.3) has a pair of pure imaginary complex conjugate eigenval-
ues. Letting ReA = 0 and ImA = 3 > 0 in (3.4), we obtain the real
part

(3.7) (v*)'(s") — c1 Re Gg(s*,s") = 0.
The imaginary part is
(3.8) B+ pe; ImGp(s*,s*) =0.

We have to check that the equation (3.7) has a solution for 8. So define
T(B) = (v")(5") — 1 Re Gyls", 5°)
then T'(f) is a strictly increasing continuous function of 42. Furthermore,

_ cosh v/¢; + bs*(cosh(v/c; +b(1 — 5*)) — 1)

lim T(8) = >0
Jim T(5) Ve +bsinhve, £ 6

and
T(0) = (v*)(s*) — c1 Re Go(s*, s*)

=7'(s")

= \/T_l—-{-—_b—s—l%lh\/—cl_—{'.l; Sinh\/01 +b (3—5:2_—1) Sinh\/CI +b (5’2—1) .

In order to have a solution of 3, T(0) must be negative. Thus there is
a pair of pure imaginary complex conjugate eigenvalues if % < st <1
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Thus, by the intermediate value theorem there exists a unique point
B, 0 < B < oo such that T(8) = 0 for 1 3 < 8" < 1. The corresponding
value p can be found by substituting 3 into the equation (3.8)

_ (€1 + b)?2 + (km)? ) o

ci Z G+ 07+ b)) 5 2 (sin kms*)°.
Therefore there exists a unique p* such that A(u*) = £4Im A\(p*) = +i §.
0

The following theorem summarizes what we have proved for the free
boundary problem with the Dirichlet boundary condition:

aib .
THEOREM 3.7. Assume that 0 < 28:_2;) < (clf:)lf: Ty With 0 <

a < c; <1, sothat (R), respectwely (F), has a unique stationary solution
(u*, s*) Where u* =0 and § < s* < 1 respectively (v*,s*), for all x> 0.

Then there exists a umque p* > 1 such that the linearization — A -+ wB
has a purely imaginary pair of eigenvalues. The point (0, s*, u*) is then
a Hopf point for (R) and there exists a C°-curve of nontrivial per10d10
orbits for (R), (F), respectively, bifurcating from (0, s*, u*), (v*, s*, *),
respectively.
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