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LOCAL STRUCTURE OF TRAJECTORY
FOR EXTREMAL FUNCTIONS

Suk YOUNG LEE

ABSTRACT. In this note we study more about the omitted arc for

the extremal functions and its %-property based upon Schiffer’s vari~

ational method and Brickman-Wilken'’s result. We give an example
other than the Koebe function which is both a support point of S
and the extreme point of HS. Furthermore, we discuss the relations
between the support points and the Léwner chain.

1. Introduction

Let A be the open unit disk in the complex plane C, and let H(A)
denote the linear space of holomorphic functions-in 4\, endowed with
the usual topology of local uniform convergence. A particular subset of
H(A) is the class S which consists of all functions f which are univalent
in A and normalized so that f(0) = 0 and f/(0) = 1.

For the study of linear extremal problems in S it is natural to consider
two sets of functions, the support points of S and the extreme points
of S.

We call f € S a support point of S if there exists a continuous linear
functional J defined on H(A) which is non-constant on S and

ReJ(f) = rglezgcReJ(g).

f € S is an extreme point of S provided for 0 <t <1,g€ S, he S,
f=tg+ (1—t)h implies that f=g=h.

Received August 10, 1998.

1991 Mathematics Subject Classification: Primary 30C45.

Key words and phrases: slit mapping, trajectories, support points, extreme points.

The author acknowledges support received from the Ministry of Education, ROK
via 1997-98, BSRI-97-1424.



Suk Young Lee

It is well known that all rotations of the Koebe functions

ko(z) =

z
maps A onto the complement of a ray from ——%e"w to co. A single slit
mapping is a slit mapping whose range is the complement of a single
Jordan arc. Functions in S that map A onto the complement of a single
Jordan arc are known to play a crucial role in the study of extremal
problems for S.

Schiffer ([14]) showed that for a quite general functional J, any so-
lution to {max ReJ(g) : ¢ € S} maps A onto the complement of a
finite number of analytic Jordan arcs, and he determined a differen-
tial equation for the arcs in terms of parameters involving the extremal
functions.

Goluzin ([7]) showed that if J has the special form

J(9) =D bug(0), (n22),
i=1

then C\ f(A) consists of finitely many arcs with the -property; that
is, the angle between the position vector and the tangent vector at any
point on the slit is smaller in magnitude than 7.

For the particular functional J(f) = Re a,, where f(z) = z +
Y me i akzk Schiffer ([15]) verified that J(f2) # 0 and any extremal
function maps A onto the complement of a single analytic slit with an
asymptotic direction at co and this slit possesses the J-property.

Pfluger ([13]) generalized this result by showing that any extremal
function for

max ReJ(f) (J non-constant on S)

maps A onto the complement of an analytic slit which has the %-
property and an asymptotic direction at co. Brickman and Wilken
([3]) found a considerably simpler proof of this result.

In this note we study more about the omitted arc and Z-property
based upon Schiffer’s variational method and Brickman and Wilken’s
result. We provide local structure of trajectories that the range of an

610



Local structure of trajectory for extremal functions

extremal function is the complement of a Jordan analytic arc satisfying
a certain differential equation. Furthermore, we discuss the relations
between the support points and the Lowner chain.

2. Local Structure of Trajectories

According to the Schiffer’s result, if I' is the complement of the range
of an extremal function, I" consists of a collection of analytic arcs sat-
isfying a differential equation of the form Q(w)dw?® > 0, where Q is
analytic on I. Such an expression Q(w)dw? is called a quadratic differ-
ential and the arcs for which Q(w)dw? > 0 are called its trajectories.
The following Schiffer’s variational method will give us much more pre-
cise information about the omitted arc.

LEMMA 1 (Schiffer). Let J be a continuous functional on H(A), and
let f € S be a point where Re{J} attains its maximum value on S.
Suppose that J has a Fréchet differential I(- ; f) which is not constant
on S. Then f maps the unit disk A\ onto the complement of a system of
finitely many analytic arcs w = w(t) satisfying the differential equation

1 £ dw'\?
wt () (%) »o
LEMMA 2 (Brickman and Wilken). Each extreme point of S and
each support point of S have the monotonic modulus property, i.e.,

it maps A\ onto the complement of an arc which extends to oo with
increasing modulus.

THEOREM 2.1 (Duren [5]). Let J be a continuous linear functional
on H(A) which is not constant on S and let f maximize Re{J} on S.
Then f maps A onto the complement of a single analytic arc I' which
satisfies the differential equation

2
(2.1) ! J( / )dw2>0.
f-
At each point w € T' except perhaps the finite tip, the tangent line
makes angle of less than 7 with the radical line from 0 to w.
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Proof. Since a continuous linear functional is its own Fréchet differ-
ential, Lemma 1 shows that I consists of finitely many analytic arcs sat-
isfying the differential equation (2.1). In fact, I is a single unbranched
arc which extends to co with monotonic modulus by Lemma 2.

Choose a point w € T, not an endpoint, and consider the function

_wf

w— f

Observe that_g belongs to S and maps A onto the complement of two
disjoint arcs extending to co. Thus g is not a support point, and so

(2.2) Re{J(9)} < Re{J(f)}-

Since J is linear, (2.2) is equivalent to

(2.3) Re{J (f’:2w)}>o, weT,

where w is not an endpoint of I'.

The inequality (2.3) has two consequences. First, the fact that
J (7%) # 0 assures that the quadratic differential has no singulari-
ties on I, except perhaps at the endpoints, so that I' has no corners.
In other words, I' is a single analytic arc. Second, the inequality (2.3)
may be combined with (2.1) to show that

dw\ 2 ;
Red { — >0 on I,
w

which is equivalent to |arg{92}| < Z. This completes the proof. O

REMARK. A recent result of Duren, Leung and Schiffer ([6]) shows
that under very general conditions the omitted arc is a half line when-
ever it has a radial angle of +7 at its tip.
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LEMMA 3 (Schiffer). Let J be a continuous linear functional on H(A)
which is not constant on S, and let f maximize Re{J} on S. Then

J(£%) #0.

THEOREM 2.2 (Duren [5]). Let J be a continuous linear functional
on H(A) which is not constant on S, and let f maximize Re{J} on S.
Then the arc ' omitted by f is asymptotic to the half-line

_1J(f%)
T 3J(f?)

(24) —J(fA)t, t>0,

at co. Furthermore, the radial angle arg {%2} of I" tends to 0 at co.

Proof. Let ' be parametrized by w = w(t), 0 < t < oo, in such a
way that w(t) — oo as t — 0 and the differential equation (2.1) takes

the form

Lo(-2) (%Y -

w2 \f-w dt |
By Lemma 3, we have J(f2) # 0. So the substitution w = u~2 trans-
forms I" to an analytic curve

u = byt +bat>+ ...

through the origin which satisfies

f? du 2__
() () =

(co+ c1b?t2 4 - ) (b2 + 6bybgt® +---) =

or
1

-3
where ¢, = J(f"*%),n=0,1,2,---. Equating cbeﬁicients, we obtain

1
(2.5) cob? = 4 167 + 6cobrbs = 0.
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On the other hand,
w=u"2=b7%"2 -2 +0(t?), t—0.
Thus T is asymptotic to the line
w=a+ft t-— o0,
where a = —2b7 2b3 and 8 = b72. But the equations (2.5) give

b1_2 = —40(), b;3b3 = —-—c;.

This proves that I approaches the half-line (2.4) near oo. In particular,
arg w —arg{—J(f%)} as w — oo along I".

Since J (7%) ='“‘i%{,—22 +0 (El-g) , it follows that argJ ('f{%) 0.
Thus the differential equation

1(75) (%U‘)z >0

shows that the radial angle arg{%"} — 0 as w — oo along I'. 0O

REMARK. Hengartner and Schober ([8]) used the monotone modulus
property to show that for every support point f € S, both f%l and

log [L(zi)] are univalent in A. The Z-property was used in [9] to show

that for every support point f(z) = z + > peo arz® € S, lag| > 1 and
|03| > %
Kirwan and Pell ([10]) improved these estimates to

laz] > V2 and l|as| > 1,
and they produced an example for which
las} < 1.774.

The sharp lower bounds are unknown.
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3. Examples

It is well known in [5] that the Koebe function

z

ko(2) = _(T:—a:—z—)_i’

|| = 1.

uniquely maximize ReJ, over S, where J;g = Zg(0), |z| = 1.

Thus, the Koebe functions k, are both support points of S and
extreme points of HS, the closed convex hull of S.

Let C denote the subclass of S which consists of close-to-convex
functions and let HC the closed convex hull of C.

It is known in [2] that the functions

z— Lz +y)2?

W, lzl=lyl =1, z#y,

fa—'y(z) =

are both support points of C and extreme points of HC. If we set
y=1l, xz#1landa= %(1 + ), the tip of omitted arc I is

1 1 1 ) 0 i
- = - = ’L, 2
fy(2a_1) 4(1-—a) -1 4cotzvvhenar: e”, 0<6<2m.

Thus with varying 6, the rays obtained con31sts of all rays through
w= —— and having the tip on the line Rew = —— . It is evident that
if |cot | > 1, then the ray will not have strictly 1ncreasmg modulus.
T herefore if [9 | < Z, then C\ f2,(A) does not have strictly increasing
modulus and thus f, is not a support point of S.

However, if the omitted half-line I is oriented so that I is traversed
from the tip P of T' to oo, a computation shows that Iarg(— )| is
the angle between the tangent vector to I' and the radius vector to I’
at P. It is easily seen that the radial angle arg{&% du‘j’} of T decreases
monotonically to 0 as I" traverses from P to co.

Thus, if § < [arg(—g)[ < m, then f;, can be neither a support
point of S nor an extreme point of HS because I fails to satisfy the
J-property.
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If larg(——-z-)l <0, ie, if —z = y, then f;, is the Koebe function
ky(z) = Ty 0 <larg(=2)| < %, then I does not violate the
7-property. So if 0 < |arg(—2)| < %, then the function

z— 3z +y)2?
(1-yz)?

is both a support point of § and an extreine point of HS.

foy(z) =

4. The Support Points and the Léwner Chain

Suppose f € S maps A onto the complement of a Jordan arc which
extends to co. By Lowner theory ([11]), f may be embedded in a family
of mappings

{f(2,0|0 <t < oo},

called a Lowner chain, with the following properties;
(i) f(2,0) = f(z)

(ii) f(z,t1) is subordinate to f(z,%3) if ¢; < 5.

(ii1) e~ tf(z,) €S, 0 <t<oo.

(iv) afé:’t) = zaféz’t) }fzggi, where |n(t)| =1, z€ A.

From (ii) it follows that for any t > 0. f(z) = f[#(z,¢),t] where
#(z,t) € H(A), is one-to-one in A and satisfies ¢(0,t) = 0, ¢'(0,t) =
e~t.  f(z,t) carries a point of the unit circle to the tip of the slit
bounding f{A,t).

THEOREM 4.1. If f is an extreme point of S and f is embedded in
the Lowner chain {f(z,t),t > 0}, then for all t > 0, e~'f(2,t) is an
extreme point of S.

Proof. Suppose not, i.e., for some ¢ > 0, suppose that
e f(zt) = sfi(2) + (1~ 8)fa(2), (z€D)
where 0 < s <1, fi,fa €S and f; # f5. Then
f(z,t) = se"fi(2) + (1 = s)e fo(2).
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By the subordination property of Lowner chain,

f(2) = £(2,0) = f[d(2,1),t] = se" filg(z,1), t] + (1 — s)e" f2[d(2, 1), ¢].

Since e'fi[¢(z,t),t] .and etfa[d(z,t),t] are distinct functions in S, it
contradicts the fact that f(z) is an extreme point of S. O

LEMMA 4 (Duren [5]). Each continuous linear functional J on the
space H(A) has the form

10 = [ [ r@du), femw),
where p is a complex-Borel measure supported on a compact subset E
of A.

THEOREM 4.2. Let J be a continuous linear functional on H(A)
which is not constant on S, and let f maximize Re{J} on S. If f
is embedded in the Lowner chain {f(2,t), t > 0}, then for all t >
0, e~*f(2,t) is a support point of S.

Proof. Let f € S satisfy

ReJ(f) = max ReJ (9)

where J is non-constant on S. By Lemma 4, we can write

1= [ /E £(2)du(2)

where p is a complex-Borel measure supported on a compact subset F
of A. Denote by {f(z,t)} the Lowner chain associated with f. Then by
the subordination property of Léwner chain,

1= [ [ e - | [ G0t = | | $1611) 9au(z).
6
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Setting ¢ = ¢(z,t) we get z = ¢71(¢,t). Thus,

_ -1
ﬂﬁ—/Lwnﬂammw(am

(4.1)
= et et -1 .
B / /¢(E,t) 760 w6 )

Since dv((,t) = etdu{¢p~1(¢,t)] is a complex Borel measure supported
on the compact set ¢(E,t) C A, we may define a continuous functional

J: such that
L@=/Awﬁ©@%ﬁ

It follows from (4.1) that

(4.2) J(f) = Jle* f(z1)].

Moreover, if g € S, then by another change of variable we see that

(4.3) Je(g) = J{e'g[o(2,1)]}

and etg[¢(z,t)] € S. From (4.2) and (4.3) we obtain

ReJile™tf(2,t)] = max ReJ:(g).
ges

Since e!¢(z, t) is a bounded univalent function, e'$(2, ) is not a support
point of S. So

ReJi(f) = ReJ[e'f(2,1)] < ReJ(f) = ReJi[e™ f(2,1)]

and we conclude that J; is non-constant on S. This completes the
proof. 0O
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