LOCAL STRUCTURE OF TRAJECTORY FOR EXTREMAL FUNCTIONS

SUK YOUNG LEE

ABSTRACT. In this note we study more about the omitted arc for the extremal functions and its $\frac{\pi}{4}$ -property based upon Schiffer's variational method and Brickman-Wilken's result. We give an example other than the Koebe function which is both a support point of S and the extreme point of HS. Furthermore, we discuss the relations between the support points and the Löwner chain.

1. Introduction

Let \triangle be the open unit disk in the complex plane \mathbb{C} , and let $H(\triangle)$ denote the linear space of holomorphic functions in \triangle , endowed with the usual topology of local uniform convergence. A particular subset of $H(\triangle)$ is the class S which consists of all functions f which are univalent in \triangle and normalized so that f(0) = 0 and f'(0) = 1.

For the study of linear extremal problems in S it is natural to consider two sets of functions, the support points of S and the extreme points of S.

We call $f \in S$ a support point of S if there exists a continuous linear functional J defined on $H(\triangle)$ which is non-constant on S and

$$ReJ(f) = \max_{g \in S} ReJ(g).$$

 $f \in S$ is an extreme point of S provided for $0 < t < 1, g \in S, h \in S$,

$$f = tg + (1-t)h$$
 implies that $f = g = h$.

Received August 10, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C45.

Key words and phrases: slit mapping, trajectories, support points, extreme points. The author acknowledges support received from the Ministry of Education, ROK via 1997-98, BSRI-97-1424.

It is well known that all rotations of the Koebe functions

$$k_{ heta}(z) = rac{z}{(1 - e^{i heta}z)^2}$$

maps \triangle onto the complement of a ray from $-\frac{1}{4}e^{-i\theta}$ to ∞ . A single slit mapping is a slit mapping whose range is the complement of a single Jordan arc. Functions in S that map \triangle onto the complement of a single Jordan arc are known to play a crucial role in the study of extremal problems for S.

Schiffer ([14]) showed that for a quite general functional J, any solution to $\{\max ReJ(g):g\in S\}$ maps \triangle onto the complement of a finite number of analytic Jordan arcs, and he determined a differential equation for the arcs in terms of parameters involving the extremal functions.

Goluzin ([7]) showed that if J has the special form

$$J(g) = \sum_{i=1}^{n} b_u g^{(i)}(0), \quad (n \ge 2),$$

then $\mathbb{C} \setminus f(\Delta)$ consists of finitely many arcs with the $\frac{\pi}{4}$ -property; that is, the angle between the position vector and the tangent vector at any point on the slit is smaller in magnitude than $\frac{\pi}{4}$.

For the particular functional $J(f) = Re \ a_n$, where $f(z) = z + \sum_{k=1}^{\infty} a_k z_k$ Schiffer ([15]) verified that $J(f^2) \neq 0$ and any extremal function maps Δ onto the complement of a single analytic slit with an asymptotic direction at ∞ and this slit possesses the $\frac{\pi}{4}$ -property.

Pfluger ([13]) generalized this result by showing that any extremal function for

$$\max_{g \in S} ReJ(f) \quad (J \text{ non-constant on } S)$$

maps \triangle onto the complement of an analytic slit which has the $\frac{\pi}{4}$ -property and an asymptotic direction at ∞ . Brickman and Wilken ([3]) found a considerably simpler proof of this result.

In this note we study more about the omitted arc and $\frac{\pi}{4}$ -property based upon Schiffer's variational method and Brickman and Wilken's result. We provide local structure of trajectories that the range of an

extremal function is the complement of a Jordan analytic arc satisfying a certain differential equation. Furthermore, we discuss the relations between the support points and the Löwner chain.

2. Local Structure of Trajectories

According to the Schiffer's result, if Γ is the complement of the range of an extremal function, Γ consists of a collection of analytic arcs satisfying a differential equation of the form $Q(w)dw^2 > 0$, where Q is analytic on Γ . Such an expression $Q(w)dw^2$ is called a quadratic differential and the arcs for which $Q(w)dw^2 > 0$ are called its trajectories. The following Schiffer's variational method will give us much more precise information about the omitted arc.

LEMMA 1 (Schiffer). Let J be a continuous functional on $H(\Delta)$, and let $f \in S$ be a point where $Re\{J\}$ attains its maximum value on S. Suppose that J has a Fréchet differential $l(\cdot; f)$ which is not constant on S. Then f maps the unit disk Δ onto the complement of a system of finitely many analytic arcs w = w(t) satisfying the differential equation

$$\frac{1}{w^2}l\left(\frac{f^2}{f-w};f\right),\left(\frac{dw}{dt}\right)^2>0.$$

LEMMA 2 (Brickman and Wilken). Each extreme point of S and each support point of S have the monotonic modulus property, i.e., it maps \triangle onto the complement of an arc which extends to ∞ with increasing modulus.

THEOREM 2.1 (Duren [5]). Let J be a continuous linear functional on $H(\triangle)$ which is not constant on S and let f maximize $Re\{J\}$ on S. Then f maps \triangle onto the complement of a single analytic arc Γ which satisfies the differential equation

$$(2.1) \qquad \frac{1}{w^2}J\left(\frac{f^2}{f-w}\right)dw^2 > 0.$$

At each point $w \in \Gamma$ except perhaps the finite tip, the tangent line makes angle of less than $\frac{\pi}{4}$ with the radical line from 0 to w.

Suk Young Lee

Proof. Since a continuous linear functional is its own Fréchet differential, Lemma 1 shows that Γ consists of finitely many analytic arcs satisfying the differential equation (2.1). In fact, Γ is a single unbranched arc which extends to ∞ with monotonic modulus by Lemma 2.

Choose a point $w \in \Gamma$, not an endpoint, and consider the function

$$g = \frac{wf}{w - f}.$$

Observe that g belongs to S and maps Δ onto the complement of two disjoint arcs extending to ∞ . Thus g is not a support point, and so

$$(2.2) Re{J(g)} < Re{J(f)}.$$

Since J is linear, (2.2) is equivalent to

(2.3)
$$\operatorname{Re}\left\{J\left(\frac{f^2}{f-w}\right)\right\} > 0, \quad w \in \Gamma,$$

where w is not an endpoint of Γ .

The inequality (2.3) has two consequences. First, the fact that $J(\frac{f^2}{f-w}) \neq 0$ assures that the quadratic differential has no singularities on Γ , except perhaps at the endpoints, so that Γ has no corners. In other words, Γ is a single analytic arc. Second, the inequality (2.3) may be combined with (2.1) to show that

$$Re\left\{\left(\frac{dw}{w}\right)^2\right\} > 0$$
 on Γ ,

which is equivalent to $|arg\{\frac{dw}{w}\}| \leq \frac{\pi}{4}$. This completes the proof. \square

REMARK. A recent result of Duren, Leung and Schiffer ([6]) shows that under very general conditions the omitted arc is a half line whenever it has a radial angle of $\pm \frac{\pi}{4}$ at its tip.

Local structure of trajectory for extremal functions

LEMMA 3 (Schiffer). Let J be a continuous linear functional on $H(\Delta)$ which is not constant on S, and let f maximize $Re\{J\}$ on S. Then

$$J(f^2)\neq 0.$$

THEOREM 2.2 (Duren [5]). Let J be a continuous linear functional on $H(\Delta)$ which is not constant on S, and let f maximize $Re\{J\}$ on S. Then the arc Γ omitted by f is asymptotic to the half-line

(2.4)
$$w = \frac{1}{3} \frac{J(f^3)}{J(f^2)} - J(f^2)t, \quad t \ge 0,$$

at ∞ . Furthermore, the radial angle arg $\{\frac{dw}{w}\}$ of Γ tends to 0 at ∞ .

Proof. Let Γ be parametrized by w = w(t), $0 < t < \infty$, in such a way that $w(t) \to \infty$ as $t \to 0$ and the differential equation (2.1) takes the form

$$\frac{1}{w^2}J\left(\frac{f^2}{f-w}\right)\left(\frac{dw}{dt}\right)^2=1.$$

By Lemma 3, we have $J(f^2) \neq 0$. So the substitution $w = u^{-2}$ transforms Γ to an analytic curve

$$u=b_1t+b_3t^3+\cdots$$

through the origin which satisfies

$$-4J\left(\frac{f^2}{1-fu^2}\right)\left(\frac{du}{dt}\right)^2=1,$$

or

$$(c_0+c_1b_1^2t^2+\cdots)(b_1^2+6b_1b_3t^2+\cdots)=-\frac{1}{4},$$

where $c_n = J(f^{n+2}), n = 0, 1, 2, \cdots$. Equating coefficients, we obtain

(2.5)
$$c_0b_1^2 = -\frac{1}{4}, \quad c_1b_1^4 + 6c_0b_1b_3 = 0.$$

On the other hand,

$$w = u^{-2} = b_1^{-2}t^{-2} - 2b_1^{-3}b_3 + O(t^2), \quad t \to 0.$$

Thus Γ is asymptotic to the line

$$w = \alpha + \beta t, \quad t \to \infty,$$

where $\alpha = -2b_1^{-3}b_3$ and $\beta = b_1^{-2}$. But the equations (2.5) give

$$b_1^{-2} = -4c_0, \qquad b_1^{-3}b_3 = -\frac{c_1}{6c_0}.$$

This proves that Γ approaches the half-line (2.4) near ∞ . In particular,

 $\arg w \to \arg\{-J(f^2)\} \text{ as } w \to \infty \text{ along } \Gamma.$ Since $J\left(\frac{f^2}{f-w}\right) = -\frac{J(f^2)}{w} + O\left(\frac{1}{w^2}\right)$, it follows that $\arg J\left(\frac{f^2}{f-w}\right) \to 0$. Thus the differential equation

$$J\left(\frac{f^2}{f-w}\right)\left(\frac{dw}{w}\right)^2 > 0$$

shows that the radial angle $\arg\left\{\frac{dw}{w}\right\} \to 0$ as $w \to \infty$ along Γ .

REMARK. Hengartner and Schober ([8]) used the monotone modulus property to show that for every support point $f \in S$, both $\frac{f(z)}{z}$ and $\log\left[\frac{f(z)}{z}\right]$ are univalent in \triangle . The $\frac{\pi}{4}$ -property was used in [9] to show that for every support point $f(z)=z+\sum_{k=2}^{\infty}a_kz^k\in S,\ |a_2|>1$ and $|a_3|>\tfrac{3}{8}.$

Kirwan and Pell ([10]) improved these estimates to

$$|a_2| > \sqrt{2}$$
 and $|a_3| > 1$,

and they produced an example for which

$$|a_2| < 1.774$$
.

The sharp lower bounds are unknown.

3. Examples

It is well known in [5] that the Koebe function

$$k_x(z) = \frac{z}{(1-xz)^2}, \qquad |x| = 1.$$

uniquely maximize ReJ_x over S, where $J_xg = \bar{x}g(0)$, |x| = 1.

Thus, the Koebe functions k_x are both support points of S and extreme points of HS, the closed convex hull of S.

Let C denote the subclass of S which consists of close-to-convex functions and let HC the closed convex hull of C.

It is known in [2] that the functions

$$f_{xy}(z) = \frac{z - \frac{1}{2}(x+y)z^2}{(1-yz)^2}, \quad |x| = |y| = 1, \quad x \neq y,$$

are both support points of C and extreme points of HC. If we set $y=1,\ x\neq 1$ and $a=\frac{1}{2}(1+x)$, the tip of omitted arc Γ is

$$f_{xy}\left(\frac{1}{2a-1}\right) = -\frac{1}{4(1-a)} = -\frac{1}{4} - \frac{i}{4}\cot\frac{\theta}{2} \text{ when } x = e^{i\theta}, \ \ 0 < \theta < 2\pi.$$

Thus, with varying θ , the rays obtained consists of all rays through $w = -\frac{1}{2}$ and having the tip on the line $Re w = -\frac{1}{4}$. It is evident that if $|\cot \frac{\theta}{2}| > 1$, then the ray will not have strictly increasing modulus. Therefore, if $|\theta| < \frac{\pi}{2}$, then $\mathbb{C} \setminus f_{xy}(\Delta)$ does not have strictly increasing modulus and thus f_{xy} is not a support point of S.

However, if the omitted half-line Γ is oriented so that Γ is traversed from the tip P of Γ to ∞ , a computation shows that $|arg(-\frac{x}{y})|$ is the angle between the tangent vector to Γ and the radius vector to Γ at P. It is easily seen that the radial angle $arg\{\frac{dw}{w}\}$ of Γ decreases monotonically to 0 as Γ traverses from P to ∞ .

Thus, if $\frac{\pi}{4} < |arg(-\frac{x}{y})| < \pi$, then f_{xy} can be neither a support point of S nor an extreme point of HS because Γ fails to satisfy the $\frac{\pi}{4}$ -property.

Suk Young Lee

If $|arg(-\frac{x}{y})| < 0$, i.e., if -x = y, then f_{xy} is the Koebe function $k_y(z) = \frac{z}{(1-yz)^2}$. If $0 < |arg(-\frac{x}{y})| \le \frac{\pi}{4}$, then Γ does not violate the $\frac{\pi}{4}$ -property. So if $0 < |arg(-\frac{x}{u})| \le \frac{\pi}{4}$, then the function

$$f_{xy}(z) = rac{z - rac{1}{2}(x+y)z^2}{(1-yz)^2}$$

is both a support point of S and an extreme point of HS.

4. The Support Points and the Löwner Chain

Suppose $f \in S$ maps \triangle onto the complement of a Jordan arc which extends to ∞ . By Löwner theory ([11]), f may be embedded in a family of mappings

$$\{f(z,t)|0\leq t<\infty\},$$

called a Löwner chain, with the following properties:

- (i) f(z,0) = f(z)
- (ii) $f(z,t_1)$ is subordinate to $f(z,t_2)$ if $t_1 < t_2$.
- (iii) $e^{-t}f(z,t) \in S$, $0 \le t < \infty$. (iv) $\frac{\partial f(z,t)}{\partial t} = z \frac{\partial f(z,t)}{\partial z} \frac{1+\eta(t)z}{1-\eta(t)z}$, where $|\eta(t)| = 1$, $z \in \triangle$.

From (ii) it follows that for any $t \geq 0$. $f(z) = f[\phi(z,t),t]$ where $\phi(z,t) \in H(\Delta)$, is one-to-one in Δ and satisfies $\phi(0,t) = 0, \ \phi'(0,t) =$ e^{-t} . f(z,t) carries a point of the unit circle to the tip of the slit bounding $f(\Delta, t)$.

Theorem 4.1. If f is an extreme point of S and f is embedded in the Löwner chain $\{f(z,t), t \geq 0\}$, then for all $t \geq 0$, $e^{-t}f(z,t)$ is an extreme point of S.

Proof. Suppose not, i.e., for some $t \geq 0$, suppose that

$$e^{-t}f(z,t) = sf_1(z) + (1-s)f_2(z), \quad (z \in \Delta)$$

where $0 < s < 1, f_1, f_2 \in S$ and $f_1 \neq f_2$. Then

$$f(z,t) = se^t f_1(z) + (1-s)e^t f_2(z).$$

By the subordination property of Löwner chain,

$$f(z) = f(z,0) = f[\phi(z,t),t] = se^t f_1[\phi(z,t),t] + (1-s)e^t f_2[\phi(z,t),t].$$

Since $e^t f_1[\phi(z,t),t]$ and $e^t f_2[\phi(z,t),t]$ are distinct functions in S, it contradicts the fact that f(z) is an extreme point of S.

LEMMA 4 (Duren [5]). Each continuous linear functional J on the space $H(\Delta)$ has the form

$$J(f)=\int\int_E f(z)d\mu(z),\quad f\in H(riangle),$$

where μ is a complex-Borel measure supported on a compact subset E of \triangle .

THEOREM 4.2. Let J be a continuous linear functional on $H(\Delta)$ which is not constant on S, and let f maximize $Re\{J\}$ on S. If f is embedded in the Löwner chain $\{f(z,t), t \geq 0\}$, then for all $t \geq 0$, $e^{-t}f(z,t)$ is a support point of S.

Proof. Let $f \in S$ satisfy

$$ReJ(f) = \max_{g \in S} ReJ(g)$$

where J is non-constant on S. By Lemma 4, we can write

$$J(f) = \int \int_E f(z) d\mu(z)$$

where μ is a complex-Borel measure supported on a compact subset E of \triangle . Denote by $\{f(z,t)\}$ the Löwner chain associated with f. Then by the subordination property of Löwner chain,

$$J(f)=\int\int_E f(z)d\mu(z)=\int\int_E f(z,0)d\mu(z)=\int\int_E f[\phi(z,t),t]d\mu(z).$$

Setting $\zeta = \phi(z,t)$ we get $z = \phi^{-1}(\zeta,t)$. Thus,

$$J(f) = \int \int_{\phi(E,t)} f(\zeta,t) d\mu [\phi^{-1}(\zeta,t)]$$

$$= \int \int_{\phi(E,t)} e^{-t} f(\zeta,t) e^t d\mu [\phi^{-1}(\zeta,t)].$$

Since $dv(\zeta,t) = e^t d\mu[\phi^{-1}(\zeta,t)]$ is a complex Borel measure supported on the compact set $\phi(E,t) \subset \Delta$, we may define a continuous functional J_t such that

$$J_t(g) = \int \int_{\phi(E,t)} g(\zeta) dv(\zeta,t).$$

It follows from (4.1) that

(4.2)
$$J(f) = J_t[e^{-t}f(z,t)].$$

Moreover, if $g \in S$, then by another change of variable we see that

(4.3)
$$J_t(g) = J\{e^t g[\phi(z,t)]\}$$

and $e^t g[\phi(z,t)] \in S$. From (4.2) and (4.3) we obtain

$$ReJ_t[e^{-t}f(z,t)] = \max_{g \in S} ReJ_t(g).$$

Since $e^t \phi(z,t)$ is a bounded univalent function, $e^t \phi(z,t)$ is not a support point of S. So

$$ReJ_t(f) = ReJ[e^t f(z,t)] < ReJ(f) = ReJ_t[e^{-t} f(z,t)]$$

and we conclude that J_t is non-constant on S. This completes the proof.

Local structure of trajectory for extremal functions

References

- [1] L. Brickman, Extreme points of the set of univalent functions, Bull. Amer. Math. Soc. 76 (1970), 372-374.
- [2] L. Brickman, T. H. MacGregor and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107.
- [3] L. Brickman and D. R. Wilken, Support point of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523-528.
- [4] J. E. Brown, A method for investigating geometric properties of support points and applications, Trans. Amer. Math. Soc. 287 (1985), 285-291.
- [5] P. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [6] P. Duren, Y. Leung and M. Schiffer, Support points with maximum radial angle, Complex variables: Theory and Applications (1983), 263-277.
- [7] G. W. Goluzin, Geometric theory of functions of a complex variable, Translations. Math. Mono., vol. 26, Amer. Math. Soc. Providence R. I., 1969.
- [8] W. Hengartner and G. Schober, Extreme points for some classes of univalent functions, Trans. Amer. Math. Soc. 185 (1973), 265-270.
- [9] W. Hengartner and G. Schober, Some new properties of support points for compact families of univalent functions in the unit disk, Michigan Math. J. 23 (1976), 207-216.
- [10] W. Kirwan and R. Pell, Extremal properties of a class of slit conformal mappings, Michigan Math. J. 25 (1978), 223-232.
- [11] K. Löwner, Untersuchugen über Schilichte Konforme Abbildungen des Einheitskreises, Math. Z. 3 (1923), 103-121.
- [12] K. Pearce, New support points of S and extreme points of HS, Proc. Amer. Math. Soc. 81 (1981), 425-428.
- [13] A. Pfluger, Linear Extremal probleme bei Schlichten Functionen, Ann. Acad. Sci. Fenn. Ser. AI 489 (1971), p. 32.
- [14] M. Schiffer, A method of variation within the family of simple functions, Proc. London. Math. Soc. 44 (1938), 432-449.
- [15] _____, On the coefficient problem for univalent functions, Tran. Amer. Math. Soc. 134 (1968), 95-101.

DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA

E-mail: sylee@mm.ewha.ac.kr