REMARKS ON WEAK HYPERMODULES

B. DAVVAZ

ABSTRACT. H_v -rings first were introduced by Vougiouklis in 1990. Then Darafsheh and the present author defined the H_v -ring of fractions $S^{-1}R$ of a commutative hyperring. The largest class of multivalued systems satisfying the module-like axioms is the H_v -module. In this paper we define H_v -module of fractions of a hypermodule. Some interesting results concerning this H_v -module is proved.

1. Basic Definitions of Hyperstructures

The concept of a hyperstructure first was introduced by Marty in [2]. A hyperstructure is a set H together with a function $\cdot: H \times H \longrightarrow \mathcal{P}^*(H)$ called hyperoperation, where $\mathcal{P}^*(H)$ denotes the set of all non-empty subsets of H. If $A, B \subseteq H$, $x \in H$ then we define

$$A \cdot B = \bigcup_{a \in A, \ b \in B} a \cdot b, \quad x \cdot B = \{x\} \cdot B, \quad A \cdot x = A \cdot \{x\}.$$

DEFINITION 1.1. A hyperstructure (H, \cdot) is called a hypergroup if

- (i) $x \cdot (y \cdot z) = (x \cdot y) \cdot z, \forall x, y, z \in H$,
- (ii) $a \cdot H = H \cdot a = H$, $\forall a \in H$.

Definition 1.2. A multivalued system (R, +, .) is a hyperring if

- (i) (R, +) is a hypergroup,
- (ii) (R, \cdot) is a semihypergroup,
- (iii) (·) is distributive with respect to (+), i.e., for all x, y, z in R we have

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z), \quad (x+y) \cdot z = (x \cdot z) + (y \cdot z).$$

Received February 2, 1998.

1991 Mathematics Subject Classification: 20N20.

Key words and phrases: hypergroup, hyperring, hypermodule, H_v -ring, H_v -module, exact sequence.

A hyperring may be commutative with respect to (+) or (\cdot) . If R is commutative with respect to both (+) and (\cdot) , then we call it a commutative hyperring. If there exists $u \in R$ such that $x \cdot u = u \cdot x = \{x\}$, $\forall x \in R$, then u is called the scalar unit of R and is denoted by 1.

DEFINITION 1.3. M is a left hypermodule over hyperring R (R-hypermodule) if (M, +) is a commutative hypergroup and there exists a map $\cdot : R \times M \longrightarrow \mathcal{P}^*(M)$ denoted by $(r, m) \longrightarrow rm$ such that for all r_1, r_2 in R and m_1, m_2 in M, we have

$$egin{array}{lll} r_1(m_1+m_2) &=& r_1m_1+r_1m_2, \\ (r_1+r_2)m_1 &=& r_1m_1+r_2m_1, \\ (r_1r_2)m_1 &=& r_1(r_2m_1). \end{array}$$

There are generalizations of the above hyperstructures (hypergroup, hyperring and hypermodule) where axioms are replaced by the weak ones. That is instead of the equality on sets one has non-empty intersections.

 H_v -structures first introduced by Vougiouklis in the Fourth AHA congress (1990) [5]. In this paper we are interested in H_v -rings and H_v -modules.

DEFINITION 1.4. A multivalued system $(R, +, \cdot)$ is called an H_v -ring if the following axioms hold:

- (i) (R, +) is an H_v -group, i.e., $(x + y) + z \cap x + (y + z) \neq \emptyset$, $\forall x, y, z \in R$, a + R = R + a = R, $\forall a \in R$,
- (ii) $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset$, $\forall x, y, z \in R$,
- (iii) (·) is weak distributive with respect to (+), i.e., for all $x, y, z \in R$,

$$x \cdot (y+z) \cap (x \cdot y + x \cdot z) \neq \emptyset, \qquad (x+y) \cdot z \cap (x \cdot z + y \cdot z) \neq \emptyset.$$

DEFINITION 1.5. M is a left H_v -module over an H_v -ring R if (M, +) is a weak commutative H_v -group and there exists a map $\cdot : R \times M \longrightarrow \mathcal{P}^*(M)$ denoted by $(r, m) \longrightarrow rm$ such that for all r_1, r_2 in R and m_1, m_2 in M, we have

$$r_1(m_1 + m_2) \cap (r_1m_1 + r_1m_2) \neq \emptyset,$$

 $(r_1 + r_2)m_1 \cap (r_1m_1 + r_2m_1) \neq \emptyset,$
 $(r_1r_2)m_1 \cap r_1(r_2m_1) \neq \emptyset.$

DEFINITION 1.6. Let M_1 and M_2 be two H_v -modules over an H_v -ring R. A mapping $f: M_1 \longrightarrow M_2$ is called an $R - H_v$ -homomorphism if, $\forall x, y \in M_1$ and $\forall r \in R$, the following relations hold:

$$f(x+y)\cap (f(x)+f(y))\neq \emptyset, \quad f(rx)\cap rf(x)\neq \emptyset.$$

f is called an inclusion R-homomorphism if, $f(x+y) \subseteq f(x)+f(y)$, $f(rx) \subseteq rf(x)$.

Finally f is called a strong R-homomorphism if, f(x + y) = f(x) + f(y), f(rx) = rf(x).

If there exists a strong one to one homomorphism from M_1 onto M_2 , then M_1 and M_2 are called isomorphic.

In this paper, we shall work over a commutative hyperring R with scalar unit, and we shall assume that M is an R-hypermodule. We remark that according to [1], a non-empty subset S of R is a strong multiplicatively closed subset (s.m.c.s) if the following conditions hold:

- (i) $1 \in S$,
- (ii) $a \cdot S = S \cdot a = S, \forall a \in S$.

Darafsheh and the present author in [1] defined the H_v -ring of fractions $S^{-1}R$ of a commutative hyperring. The construction of $S^{-1}R$ can be carried through with an R-hypermodule M in place of the hyperring R. In section 2 of this paper we introduce the set of fractions $S^{-1}M$ and define addition and multiplication by elements of $S^{-1}R$, then we get that $S^{-1}M$ is an $S^{-1}R - H_v$ -module as well as some interesting results with this respect.

2. H_v -module of Fractions

Let X be the set of all ordered pairs (m, s) where $m \in M$, $s \in S$. For $A \subseteq M$ and $B \subseteq S$, we denote the set $\{(a, b) \mid a \in A, b \in B\}$ by (A, B). The relation \sim is defined on $\mathcal{P}^*(X)$ as follows: $(A, B) \sim (C, D)$ iff there exists a subset T of S such that $T \cdot (B \cdot C) = T \cdot (D \cdot A)$.

LEMMA 2.1. \sim is an equivalence relation on $\mathcal{P}^*(X)$.

If we restrict the relation \sim on X, and identify $(m, x) \in X$ with the subset $\{(m, x)\}$ of X, then we obtain the following two lemmas.

LEMMA 2.2. For (m_1, s_1) , $(m_2, s_2) \in X$, we have $(m_1, s_1) \sim (m_2, s_2)$ iff there exists $T \subseteq S$ such that $T \cdot (s_1 \cdot m_2) = T \cdot (s_2 \cdot m_1)$.

LEMMA 2.3. \sim is an equivalence relation on X.

The equivalence class containing (m, s) is denoted by [m, s] and we let $S^{-1}M$ to be the set of all the equivalence classes.

In $\mathcal{P}^*(X)$, the equivalence class containing (A, B) is denoted by [[A, B]]. We define

$$\langle\langle A,B\rangle\rangle = \bigcup_{(C,D)\in[[A,B]]} \{[c,d] \mid c\in C, d\in D\}.$$

LEMMA 2.4. For all $m \in M$, $s \in S$, we have $\langle \langle m, s \rangle \rangle = \langle \langle sm, ss \rangle \rangle$.

Now we define addition and multiplication by elements of $S^{-1}R$, as follows:

 $[m_1, s_1] \oplus [m_2, s_2] = \bigcup \{[a, b] \mid a \in A, b \in B\} = \langle \langle s_1 m_2 + s_2 m_1, s_1 s_2 \rangle \rangle,$ where the union is over $(A, B) \in [[s_1 m_2 + s_2 m_1, s_1 s_2]]$

 $[r,s]\odot[m_1,s_1]=\bigcup\{[a,b]\mid a\in A,b\in B\}=\langle\langle rm_1,ss_1\rangle\rangle$, where the union is over $(A,B)\in[[rm_1,ss_1]]$

In both cases $[m_1, s_1]$, $[m_2, s_2] \in S^{-1}M$ and $[r, s] \in S^{-1}R$.

THEOREM 2.5. \oplus and \odot defined above are independent of the choices of representatives $[m_1, s_1]$, $[m_2, s_2]$ and [r, s] and that $S^{-1}M$ satisfies the axioms of an $S^{-1}R - H_v$ -module.

If we define

$$r \odot [m_1, s_1] = \langle \langle rm_1, s_1 \rangle \rangle$$

then $S^{-1}M$ becomes an $R-H_v$ -module.

Proof. The proof is straightforward and omitted.

Definition 2.6. Hypersubmodule U of M is called a hyperisolated submodule if it satisfies the following axiom:

For all $A \subseteq U$, $B \subseteq S$ if $(X, Y) \in [[A, B]]$ then $X \subseteq U$.

LEMMA 2.7. Let U be a hyperisolated submodule of M then the set $S^{-1}U = \{[u, s] \mid u \in U, s \in S \}$ is an $R - H_v$ -submodule of $S^{-1}M$.

Proof. First, we prove that $(S^{-1}U, \oplus)$ is an H_v -subgroup of $(S^{-1}M, \oplus)$. For every $[m_1, s_1], [m_2, s_2] \in S^{-1}U$, we have

$$[m_1,s_1] \oplus [m_2,s_2] = \bigcup_{(A,B) \in [[s_2m_1+s_1m_2,\ s_1s_2]]} \big\{ [m,s] \mid m \in A,\ s \in B \ \big\}.$$

Since $m_1, m_2 \in U$ then we get $s_2m_1 + s_1m_2 \subseteq U$ and since U is a hyperisolated submodule of M, then $A \subseteq U$. Therefore $[m_1, s_1] \oplus [m_2, s_2] \subseteq S^{-1}U$.

Now we prove the equality $S^{-1}U = [m_1, s_1] \oplus S^{-1}U$, for all $[m_1, s_1] \in S^{-1}U$. Suppose $[m, s] \in S^{-1}U$, $m \in U$. Since $s, s_1 \in S$, by definition of S there exists $s_2 \in S$ such that $s \in s_1s_2$. And since U is a hypersubmodule, we have $s_2m_1 + (s_1 + 1)U = U$. Now $m \in U$ and $s_2m_1 + (s_1 + 1)U = U$ imply that there exists $m_2 \in U$ such that $m \in s_2m_1 + s_1m_2 + m_2$ hence $m \in s_2m_1 + s_1(m_2 + s_3m_2)$ where $1 \in s_3s_1$. So there exists $x \in m_2 + s_3m_2$ such that $m \in s_2m_1 + s_1x$, therefore $[m, s] \in [m_1, s_1] \oplus [x, s_2]$ implying $S^{-1}U \subseteq [m_1, s_1] \oplus S^{-1}U$.

It remains to prove that $R \odot (S^{-1}U) \subseteq S^{-1}U$. To do this suppose that $[u,s] \in S^{-1}U$ and $r \in R$, then

$$r\odot [u,s] = \bigcup_{(A,B)\in [[ru,s]]} \{ [x,y] \ | \ x\in A, \ y\in B \}.$$

Since $u \in U$ we have $ru \subseteq U$ and since U is a hyperisolated submodule of M we get $A \subseteq U$. Consequently $r \odot [u, s] \subseteq S^{-1}U$. Therefore the lemma is proved.

THEOREM 2.8. Let M_1 and M_2 be two R-hypermodules and let $f: M_1 \longrightarrow M_2$ be a strong R-homomorphism. Then the map $S^{-1}(f): S^{-1}M_1 \longrightarrow S^{-1}M_2$ defined by $S^{-1}(f)[m,s] = [f(m),s]$, is an $S^{-1}R - H_v$ -homomorphism.

Proof. Suppose that $[m_1, s_1]$, $[m_2, s_2] \in S^{-1}M_1$ and $[r, s] \in S^{-1}R$. First we show that $S^{-1}(f)$ is well-defined. If $[m_1, s_1] = [m_2, s_2]$ then there exists $T \subseteq S$ such that $T \cdot (s_1 \cdot m_2) = T \cdot (s_2 \cdot m_1)$ which implies $f(T \cdot (s_1 \cdot m_2)) = f(T \cdot (s_2 \cdot m_1))$ and so $T \cdot (s_1 \cdot f(m_2)) = T \cdot (s_2 \cdot f(m_1))$ or

 $[f(m_1), s_1] = [f(m_2), s_2]$. Therefore $S^{-1}(f)$ is well-defined. Moreover, $S^{-1}(f)$ is an $S^{-1}R - H_v$ -homomorphism because, we have

$$\begin{split} S^{-1}(f)([m_1,s_1] \oplus [m_2,s_2]) \\ &= S^{-1}(f) \left(\bigcup_{\substack{(A,B) \in [[s_1m_2+s_2m_1,s_1s_2]]\\ \\ = \bigcup_{\substack{(A,B) \in [[s_1m_2+s_2m_1,s_1s_2]]\\ \\ = \bigcup_{\substack{(A,B) \in [[s_1m_2+s_2m_1,s_1s_2]]\\ \\ (A,B) \in [[s_1m_2+s_2m_1,s_1s_2]]}} \{ [f(a),b] \mid a \in A, b \in B \} \right) \end{split}$$

and

$$\begin{split} S^{-1}(f)([m_1,s_1]) & \oplus S^{-1}(f)([m_2,s_2]) \\ & = [f(m_1),s_1] \oplus [f(m_2),s_2] \\ & = \bigcup_{\substack{(A,B) \in [[s_1f(m_2)+s_2f(m_1),s_1s_2]] \\ = \bigcup_{\substack{(A,B) \in [[f(s_1m_2+s_2m_1),s_1s_2]]}}} \{[a,b] \mid a \in A, b \in B\}. \end{split}$$

Therefore we have

$$\{ [f(a), b] \mid a \in s_1 m_2 + s_2 m_1, b \in s_1 s_2 \}$$

$$\subseteq S^{-1} (f) ([m_1, s_1] \oplus [m_2, s_2]),$$

$$\{ [a, b] \mid a \in f(s_1 m_2 + s_2 m_1), b \in s_1 s_2 \}$$

$$\subseteq S^{-1} (f) ([m_1, s_1]) \oplus S^{-1} (f) ([m_2, s_2]).$$

And so

$$S^{-1}(f)([m_1,s_1]\oplus [m_2,s_2])\cap S^{-1}(f)([m_1,s_1])\oplus S^{-1}(f)([m_2,s_2])\neq \emptyset.$$

Similarly, we get

$$\{[f(a),b] \mid a \in rm_1, b \in ss_1\} \subseteq S^{-1}(f)([r,s] \odot [m_1,s_1]),$$

$$\{[a,b] \mid a \in rf(m_1), b \in ss_1\} \subseteq [r,s] \odot S^{-1}(f)([m_1,s_1]).$$

And so

$$S^{-1}(f)([r,s]\odot[m_1,s_1])\cap [r,s]\odot S^{-1}(f)([m_1,s_1])\neq\emptyset,$$
 which proves that $S^{-1}(f)$ is an $S^{-1}R-H_v$ -homomorphism. \square

LEMMA 2.9. The natural mapping $\Psi: M \longrightarrow S^{-1}M$ defined by $\Psi(m) = [m, 1]$ is an inclusion R-homomorphism.

Proof. For every $m_1, m_2 \in M$, we have

$$\Psi(m_1 + m_2) = \{ [\alpha, 1] \mid \alpha \in m_1 + m_2 \}
\subseteq \bigcup_{\substack{(A,B) \in [[m_1 + m_2, 1]] \\ = [m_1, 1] \oplus [m_2, 1] \\ = \Psi(m_1) \oplus \Psi(m_2).}} \{ [a, b] \mid a \in A, b \in B \}$$

And for every $r \in R$ and $m \in M$ we have

$$\Psi(rm) = \{ [\alpha, 1] \mid \alpha \in rm \} \subseteq \langle \langle rm, 1 \rangle \rangle = r \odot \Psi(m).$$

Therefore Ψ is an inclusion R-homomorphism.

DEFINITION 2.10. Let M_1 and M_2 be two R-hypermodules and f, g: $M_1 \longrightarrow M_2$ be R-homomorphisms. We define the mapping $S^{-1}(f+g)$ from $S^{-1}M_1$ into $\mathcal{P}^*(S^{-1}M_2)$ as follows:

$$S^{-1}(f+g)([m,s]) = \langle \langle f(m) + g(m), s \rangle \rangle.$$

Proposition 2.11. Let M_1 , M_2 and M_3 be R-hypermodules and $f,g:M_1\longrightarrow M_2$ and $h:M_2\longrightarrow M_3$ be R-homomorphisms. Then

- $\begin{array}{ll} \text{(i)} & S^{-1}(f+g) = S^{-1}(f) + S^{-1}(g), \\ \text{(ii)} & S^{-1}(hof) = S^{-1}(h)oS^{-1}(f), \end{array}$
- (iii) $S^{-1}(id_{M_1}) = id_{S^{-1}M_1}$.

PROPOSITION 2.12. Let C_1 be the category of R-hypermodules and strong R-homomorphisms and let C_2 be the category of $R-H_v$ -modules and $R-H_v$ -homomorphisms. Then the mapping $S^{-1}: \mathcal{C}_1 \longrightarrow \mathcal{C}_2$ is a functor.

DEFINITION 2.13. Let M_1 , M_2 and M_3 be R-hypermodules $(R - H_v - H_v$ modules respectively) and let U be a subhypermodule (H_v -submodule) of M_3 . The sequence of strong R-homomorphisms $M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3$ is said to be *U*-exact if $\text{Im} f = g^{-1}(U)$.

THEOREM 2.14. Let U be an H_v -isolated submodule of M_3 and the sequence $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ be U-exact. Then the sequence $S^{-1}M_1 \xrightarrow{S^{-1}(f)} S^{-1}M_2 \xrightarrow{S^{-1}(g)} S^{-1}M_3$ is $S^{-1}U$ -exact, i.e., $ImS^{-1}(f) = (S^{-1}(g))^{-1}(S^{-1}U)$.

Proof. Suppose that $[m, s] \in \text{Im}S^{-1}(f)$ then there exists $m_1 \in M_1$ such that $[m, s] = [f(m_1), s]$. Since $f(m_1) \in \text{Im}f = g^{-1}(U)$, there exists $u \in U$ such that $f(m_1) \in g^{-1}(u)$ and so $[f(m_1), s] \in \{ [x, s] \mid x \in g^{-1}(u) \}$ which implies $[f(m_1), s] \in (S^{-1}(g))^{-1}([u, s])$. Therefore $[f(m_1), s] \in (S^{-1}(g))^{-1}(S^{-1}U)$.

Now, if $[u, t] \in (S^{-1}(g))^{-1}(S^{-1}U)$, then $[u, t] \in (S^{-1}(g))^{-1}(\{[u, s] | u \in U, s \in S\})$ which implies $[u, t] \in \{[x, s] | g(x) \in U, s \in S\}$. Therefore for some x where $g(x) \in U$ we have [u, t] = [x, s]. From $g(x) \in U$ we get $x \in \text{Im } f$ and so $[x, s] \in \text{Im } S^{-1}(f)$. Therefore $[u, t] \in \text{Im } S^{-1}(f)$.

3. The Fundamental Relations γ^* and ϵ^*

Consider the left H_v -module M over an H_v -ring R. The relation γ^* is the smallest equivalence relation on R such that the quotient R/γ^* is a ring. γ^* is called the fundamental equivalence relation on R and R/γ^* is called the fundamental ring, see [3], [4]. The fundamental relation ϵ^* on M over R is the smallest equivalence relation such that M/ϵ^* is a module over the ring R/γ^* , see [4].

According to [4], if \mathcal{U} denotes the set of all expressions consisting of finite hyperoperations of either on R and M or the external hyperoperation applied on finite subsets of R and M. Then a relation ϵ can be defined on M whose transitive closure is the fundamental relation ϵ^* . The relation ϵ is defined as follows: for all $x, y \in M$,

$$x \in y \iff \{x, y\} \subseteq u, \text{ for some } u \in \mathcal{U}.$$

Suppose $\gamma^*(r)$ is the equivalence class containing $r \in R$ and $\epsilon^*(x)$ is the equivalence class containing $x \in M$. On M/ϵ^* the sum \circ and the external product \square using the γ^* classes in R, are defined as follows: for all $x, y \in M$ and for all $x \in R$,

$$\epsilon^*(x) \circ \epsilon^*(y) = \epsilon^*(c), \quad \forall c \in \epsilon^*(x) + \epsilon^*(y),$$
 $\gamma^*(r) \Box \epsilon^*(x) = \epsilon^*(d), \quad \forall d \in \gamma^*(r).\epsilon^*(x).$

Now, we will prove two theorems concerning the fundamental relations γ^* and ϵ^* .

Let ϵ_s^* be the fundamental equivalence relation on $S^{-1}M$ and \mathcal{U}_s be the set of all expressions consisting of finite hyperoperations of either on $S^{-1}R$ and $S^{-1}M$ or of external hyperoperation. In this case $S^{-1}M/\epsilon_s^*$ is an $S^{-1}R/\gamma_s^*$ -module.

Theorem 3.1. $S^{-1}M/\epsilon_s^*$ is an R/γ^* - module.

Proof. We can define

$$\gamma^*(r)*\epsilon_s^*([m,s]) = \gamma_s^*([r,1]) \square \epsilon_s^*([m,s]).$$

Then it is clear that $S^{-1}M/\epsilon_s^*$ is an R/γ^* -module.

THEOREM 3.2. There is an R/γ^* -homomorphism $h: M/\epsilon^* \longrightarrow S^{-1}M/\epsilon_*^*$.

Proof. we define $h(\epsilon^*(m)) = \epsilon_s^*([m,1])$. First we prove that h is well defined. If $\epsilon^*(m_1) = \epsilon^*(m_2)$ then $m_1\epsilon^*m_2$ which holds iff $\exists x_1, \ldots, x_{m+1}$; $u_1, \ldots, u_m \in \mathcal{U}$ with $x_1 = m_1, x_{m+1} = m_2$ such that $\{x_i, x_{i+1}\} \subseteq u_i, i = 1, \ldots, m$ which implies $\{[x_i, 1], [x_{i+1}, 1]\} \subseteq \langle\langle u_i, 1 \rangle\rangle \in \mathcal{U}_s$. Therefore $[m_1, 1]\epsilon_s^*[m_2, 1]$ and so $\epsilon_s^*([m_1, 1]) = \epsilon_s^*([m_2, 1])$. Thus h is well-defined. h is a homomorphism because

$$h(\epsilon^*(a) \circ \epsilon^*(b)) = h(\epsilon^*(c)) = \epsilon_s^*([c, 1]), \quad \forall c \in \epsilon^*(a) + \epsilon^*(b),$$
 $h(\epsilon^*(a)) \circ h(\epsilon^*(b)) = \epsilon_s^*([a, 1]) \circ \epsilon_s^*([b, 1]) = \epsilon_s^*([d, s]),$ $\forall [d, s] \in \epsilon_s^*([a, 1]) \oplus \epsilon_s^*([b, 1]),$

setting $d = c \in a + b, s = 1$. So it is proved that $h(\epsilon^*(a) \circ \epsilon^*(b)) = h(\epsilon^*(a)) \circ h(\epsilon^*(b))$.

And also we have

$$\begin{split} h(\gamma^*(r)\Box \epsilon^*(m)) &= h(\epsilon^*(a)) = \epsilon_s^*([a,1]), \quad \forall a \in \gamma^*(r).\epsilon^*(m), \\ \gamma^*(r) * h(\epsilon^*(m)) &= \gamma^*(r) * \epsilon_s^*([m,1]) = \gamma_s^*([r,1])\Box \epsilon_s^*([m,1]) = \epsilon_s^*([b,s]), \\ \forall [b,s] \in \gamma_s^*([r,1]) \odot \epsilon_s^*([m,1]). \end{split}$$

Therefore, since we can take $b = a \in r \cdot m$ and s = 1, we get

$$h(\gamma^*(r)\Box \epsilon^*(m)) = \gamma^*(r) * h(\epsilon^*(m))$$

B. Davvaz

Hence h is a homomorphism of modules.

ACKNOWLEDGMENTS. The author would like to thank his Ph. D. thesis supervisor professor M. R. Darafsheh for his guidance and helpful discussions throughout this work.

References

- [1] M. R. Darafsheh and B. Davvaz, H_v -ring of fractions, to appear in Rivista Math. Pura ed Appl., N. 23.
- [2] F. Marty, Sur une generallisation de la notion de group, 8th congres de Math. Scandinaves, Stockholm (1934), 45-49.
- [3] S. Spartalis and T. Vougiouklis, The fundamental relations on H_v-rings, Rivista Math. Pura ed Appl., N. 14, (1994), 7-20.
- [4] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., U.S.A, 1994.
- [5] ______, The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991), 203-211.

Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Department of Mathematics, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran

E-mail: davvaz@vax.ipm.ac.ir