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REMARKS ON WEAK HYPERMODULES
B. Davvaz

ABSTRACT. H,-rings first were introduced by Vougiouklis in 1990.
Then Darafsheh and the present author defined the H,-ring of frac-
tions S~'R of a commutative hyperring. The largest class of multi-
valued systems satisfying the module-like axioms is the H,-module.
In this paper we define H,-module of fractions of a hypermodule.
Some interesting results concerning this H,-module is proved.

1. Basic Definitions of Hyperstructures

The concept of a hyperstructure first was introduced by Marty in [2]. A
hyperstructure is a set H together with a function - : H x H — P*(H)
called hyperoperation, where P*(H) denotes the set of all non-empty
subsets of H. If A, B C H, z € H then we define

A-B= |J ab z-B={z}-B, A-z=A- {z}.
a€A, peB
DEFINITION 1.1. A hyperstructure (H,-) is called a hypergroup if
(1) m-(y-z)z(a:-y)-z, VCI),y,ZGH,
(i) a-H=H-a=H,Va€ H.
DEFINITION 1.2. A multivalued system (R, +,.) is a hyperring if
(i) (R,+) is a hypergroup,
(1) (R, ) is a semihypergroup,
(iii) (-) is distributive with respect to (+), i.e., for all z,y,z in R we
have

z-(y+2)=(-y)+(z-2), (z+y)-z2=(z-2)+(y-2).
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A hyperring may be commutative with respect to (+) or (-). If R is
commutative with respect to both (+) and (-), then we call it a commu-
tative hyperring. If there exists u € R such that z-u = u-z = {z},
Vz € R, then u is called the scalar unit of R and is denoted by 1.

DEFINITION 1.3. M is a left hypermodule over hyperring R (R-
hypermodule) if (M,+) is a commutative hypergroup and there exists
amap - : R x M — P*(M) denoted by (r,m) — rm such that for all
1,72 in R and m;, my in M, we have

™ (m1 + mg) = mm + 1M,
(r1+re)my = Timy + momy,
(rire)my = ri(ramy).

There are generalizations of the above hyperstructures (hypergroup,
hyperring and hypermodule) where axioms are replaced by the weak ones.
That is instead of the equality on sets one has non-empty intersections.

H,-structures first introduced by Vougiouklis in the Fourth AHA con-
gress (1990) [5]. In this paper we are interested in H,-rings and H,-
modules.

DEFINITION 1.4. A multivalued system (R, +,-) is called an H,-ring
if the following axioms hold:
(i) (R,+) is an H,-group, i.e.,
(x+y)+2nNz+(y+2)#0, Vz,y,2€R,
a+R=R+a=R, Va€ER,
(ll) (.’Zy) ~zNT- (yZ) #0’ Vz,y,2 € R,
(iii) (-) is weak distributive with respect to (+), i.e., for all z,y,z € R,

z-(y+2)N(z-y+z-2)#0, (x+y)-z2N(z-z2+y-2z) #0.

DEFINITION 1.5. M is a left H,-module over an H,-ring R if (M, +)
is a weak commutative H,-group and there exists a map - : R x M —
P*(M) denoted by (r, m) —> rm such that for all 71,72 in R and my, m,
in M, we have

rl(ml + m2) N ('rlml + T'lmg) 7é 0,
(7'1 =+ Tz)ml N (r1m1 —+ Tgml) 7é 0,
# 0

(rire)my N ri(romy)
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DEFINITION 1.6. Let M; and M, be two H,-modules over an H,-ring
R. A mapping f : My — M, is called an R — H,-homomorphism if,
Vz,y € M; and Vr € R, the following relations hold:

fle+y)n(f(z) + f@) #0, flrz)Nrf(z)#0.

[ is called an inclusion R-homomorphism if, f(z+y) C f(z)+f(y), f(rz)
Crf(z).

Finally f is called a strong R-homomorphism if, f(z +y) = f(z) +
@), fre)=ri(a).

If there exists a strong one to one homomorphism from M; onto M,
then M; and M, are called isomorphic.

In this paper, we shall work over a commutative hyperring R with
scalar unit, and we shall assume that M is an R-hypermodule. We
remark that according to [1], a non-empty subset S of R is a strong
multiplicatively closed subset (s.m.c.s) if the following conditions hold:

(i) 1€ 5,

(ii)a-S=S-a=8,VaeS.

Darafsheh and the present author in [1] defined the H,-ring of fractions
S7'R of a commutative hyperring. The construction of S~'R can be
carried through with an R-hypermodule M in place of the hyperring R.
In section 2 of this paper we introduce the set of fractions S~!M and
define addition and multiplication by elements of S~!R, then we get that
S™'M is an S~'R — H,-module as well as some interesting results with
this respect.

2. H,-module of Fractions

Let X be the set of all ordered pairs (m, s) where m € M, s € S. For
A C M and B C S, we denote the set {(a,b) | a € A,b € B} by (4, B).
The relation ~ is defined on P*(X) as follows:
(A, B) ~ (C, D) iff there exists a subset T of S such that T - (B - C) =
T-(D- A).

LEMMA 2.1. ~ is an equivalence relation on P*(X).
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If we restrict the relation ~ on X, and identify (m,z) € X with the
subset {(m, z)} of X, then we obtain the following two lemmas.

LEMMA 2.2. For (my,s;), (mq,ss) € X, we have (my, s1) ~ (mg, s2)
iff there exists T C S such that T - (s;-mg) =T - (s2 - ™).

LEMMA 2.3. ~ is an equivalence relation on X.

The equivalence class containing (mn, s) is denoted by [m, s] and we let
S~1M to be the set of all the equivalence classes.

In P*(X), the equivalence class containing (A, B) is denoted by [[4, B]].
We define

(A,B)Y= |J {ldlceCdeD}.

(C.D)€([A.B]]

LEMMA 2.4. For allm € M, s € S, we have ((m, s)) = ((sm, ss)).

Now we define addition and multiplication by elements of S~'R, as
follows:
[ml,sl] &b [m2,32] = U{[a, b] | a€Abe B} = ((slm2 + Somy, 3182)>,
where the union is over (A, B) € [[sim3 + samy, 515]]
[r, s]®[m1, 81) = U{la,b] | @ € A,b € B} = ((rmy, s51)), where the union
is over (A, B) € [[rmy, ss1]]
In both cases [my, 51], [m2, s2] € S'M and [r,s] € S7'R.

THEOREM 2.5. @ and ® defined above are independent of the choices
of representatives [my, s1], [me, s2] and [r, s] and that S™'M satisfies the
axioms of an S™'R — H,-module.

If we define

r @ [my, s1] = ({rmu, s1))
then S™'M becomes an R — H,-module.

Proof. The proof is straightforward and omitted. O

DEFINITION 2.6. Hypersubmodule U of M is called a hyperisolated
submodule if it satisfies the following axiom:
Foral ACU, BC Sif (X,Y)€[AB]]then X CU.
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LEMMA 2.7. Let U be a hyperisolated submodule of M then the set
S ={[u,s] |ueU, s€S}isan R— H,-submodule of S7'M.

Proof. First, we prove that (S~'U, @) is an H,-subgroup of (S~ M, @).
For every [my, 51}, [mg, s2] € S71U, we have

[my, 81) ® [my, 9] = U {lm,s] |[me A, seB}.

(A,B)e[[szm1+31m2, 8182]]

a hyperisolated submodule of M, then A C U. Therefore [my, s;] &
[mz, 82] - S-U.

Now we prove the equality S™'U = [m,, 5;] ® S~U, for all [m,;, s,] €
S~1U. Suppose [m, s] € S~U, m € U. Since s, s; € S, by definition of S
there exists s, € S such that s € s;s;. And since U is a hypersubmodule,
we have som; + (s; + 1)U =U. Now m € U and som; + (s + DU =U
imply that there exists my € U such that m € sym; + s;my + ms hence
m € Sgmy + $1(mg + sgmy) where 1 € s3s;. So there exists £ € mg + s3mo
such that m € sym; + s;z, therefore [m, s] € [my, s1] @ [z, s3] implying
87U C [my,s1] @ S~'U.

It remains to prove that R® (S~'U) C S~!U. To do this suppose that
[u,s] € S~U and r € R, then

rousl= |J {l=ylzea yeB}
(A,B)€[{ru,s]]

Since m;, my € U then we get sym; + symy C U and since U is

Since u € U we have ru C U and since U is a hyperisolated submodule of
M we get A C U. Consequently 7 ® [u,s] C S™1U. Therefore the lemma
is proved. 0

THEOREM 2.8. Let M; and M; be two R-hypermodules and let f :
M; — M, be a strong R-homomorphism. Then the map S7'(f) :
S~1M; — S7'M, defined by S~(f)[m,s] = [f(m),s], isan SR — H,-
homomorphism.

Proof. Suppose that [m;, s}, [ma, so] € S™'M; and [r, s] € S~'R. First
we show that S7(f) is well-defined. If [my,s;1] = [my,s;] then there
exists T C S such that T - (sy - mg) = T - (s2 - my) which implies f(T -
(s1-m2)) = f(T - (s2-my)) and so T - (81 f(ma)) =T - (s2 - f(mq)) or
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[f(ma), s1] = [f(my), s2]. Therefore S~1(f) is well-defined.
Moreover, S™}(f) is an S~'R ~ H,-homomorphism because, we have

S7Hf)([m1, 1] @ [ma, s2])
=S7(f) U {[a, 8] IGEA,bGB})

(A4,B)e[[s1ma+sam1,8182]]
= U S7H(f)({la,b] | a € A,b € B})
(A,B)€[[sima+s2m1,s152]]
= U {[f(a),b] | a € A,be B}

(A,B)€[[s1ma+s9mu,s182]]

and

S7Hf)([m1, s1]) ® ST (F)(Ime, s2])
= [f(m1), s1] @ [f(my), so]

U {la,b] | a € A,b € B}
(A,B)€[[s1f(m2)+s2f(m1),5182]]
= U {la,b) | a € A,b € B}.

(A,B)e[(f(s1ma+s2my),s182]]
Therefore we have
{[f(a),b} | a € symg + symy, b € 3132}
] - S—l (f) ([mlrsl] @ [m2732])’
{la,b] | @ € f(sima + samy),b € sy52}
C S7H(F) ([ma, 1)) @ S7H(f)([ma, 52])-
And so
S7HF)([ma, s1] @ [ma, 52]) N S7H(F)([ma, 51]) & STHSF)([ma, s2]) # 0.
Similarly, we get
{[f(a),b] | a € rmy,b € 851} € STHf)([r, 3] © [, 51]),
{[a,b] | @ € rf(my),b € ss1} C [r, 5] © S~ F)([m1, 51))-
And so

STHf)([r, 8] © [ma, s1]) N [r, 5] © STH(F)([ma, s1]) # 0,
which proves that S~1(f) is an S~'R — H,-homomorphism. a
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LEMMA 2.9. The natural mapping ¥ : M — S™'M defined by
¥(m) = [m, 1] is an inclusion R-homomorphism.

Proof. For every m,, ms € M, we have
U(my+me) = {[a,1]| @ €my+mq}
c U {isbllacaben)
(A,B)e[[my+ma,1}
[ml, 1] & [m2’ 1]
= \Il(ml) @ \If(mg)
And for every r € R and m € M we have
Y(rm) = {(o, 1] | @ € rm} C {{rm, 1)) = r ® ¥(m).

Therefore ¥ is an inclusion R-homomorphism. g

DEFINITION 2.10. Let M; and M; be two R-hypermodules and f, g :
M, — M; be R-homomorphisms. We define the mapping S~!(f + g)
from S~1M; into P*(S~'M,) as follows:

S7HF +9)([m, 5]) = ((f(m) + g(m), s)).

PROPOSITION 2.11. Let M,;, M; and M; be R-hypermodules and
f,9: My — M and h : My — M3 be R-homomorphisms. Then

(i) S7Hf+49)=S"f)+S ),
(i) S7'(hof) = S~I(R)oS~(f),
(lll) S_l('I:dMl) = ids—lMl.
PROPOSITION 2.12. Let C; be the category of R-hypermodules and
strong R-homomorphisms and let C; be the category of R — H,-modules

and R — H,-homomorphisms. Then the mapping S~! : C; — Cy is a
functor.

DEFINITION 2.13. Let M;, M, and M3 be R-hypermodules (R — H,-
modules respectively) and let U be a subhypermodule (H,-submodule)

of Mj. The sequence of strong R-homomorphisms M; EEAN My, 2 Msis
said to be U-exact if Imf = g~} (U).
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THEOREM 2.14. Let U be an H,-isolated submodule of M3 and the se-

-1
quence M, S, M, -5 M5 be U-exact. Then the sequence S~ M, )

S-1M, 9 §-10, is S-'U-exact, i.e., ImS~1(f) = (S~1(g))"(S-'V).

Proof. Suppose that {m, s] € ImS~!(f) then there exists m; € M, such
that [m, s] = [f(m1), s]. Since f(m,;) € Imf = g~'(U), there exists u € U
such that f(m,) € g7}(u) and so [f(m,),s] € { [z, ] | z € g7'(u) } which
implies [f(m1),s] € (S7}(g))7'([u, s]). Therefore [f(m1),s] € (S7'(9))™!
(S-10).

Now, if [u, t] € (S71(g))~}(S~IU), then [y, t] € (S7(g))}({ [u,s] | v €
U, s € S }) which implies [u,t] € { [z, 3] | g(z) € U, s € S }. Therefore
for some z where g(z) € U we have [u,t] = [z, s]. From g(z) € U we get
z € Imf and so [z, s] € ImS~!(f). Therefore [u,t] € ImS~!(f). O

3. The Fundamental Relations v* and ¢*

Consider the left H,-module M over an H,-ring R. The relation +v* is
the smallest equivalence relation on R such that the quotient R/v* is a
ring. 7* is called the fundamental equivalence relation on R and R/vy* is
called the fundamental ring, see [3], [4]. The fundamental relation €* on
M over R is the smallest equivalence relation such that M/¢* is a module
over the ring R/~*, see [4].

According to [4], if U denotes the set of all expressions consisting of
finite hyperoperations of either on R and M or the external hyperoper-
ation applied on finite subsets of R and M. Then a relation ¢ can be
defined on M whose transitive closure is the fundamental relation €*.
The relation ¢ is defined as follows: for all z,y € M,

zey <= {z,y} Cu, for someu e U.

Suppose *(r) is the equivalence class containing r € R and €*(z) is
the equivalence class containing z € M. On M/e* the sum o and the
external product [0 using the v* classes in R, are defined as follows: for
all z,y € M and for all » € R,

€'(z)o €' (y) =€'(c), Vece e (z)+ € (y),
Y (r)Oe* (z) = €*(d), Vd € v*(r).€*(z).
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Now, we will prove two theorems concerning the fundamental relations
~* and €*.

Let € be the fundamental equivalence relation on S~'M and U, be
the set of all expressions consisting of finite hyperoperations of either on
S-1R and S-'M or of external hyperoperation. In this case S™'M/e; is
an S™'R/~:-module.

THEOREM 3.1. S~!M/¢€; is an R/~*- module.
Proof. We can define
7' (r) % €,([m, s]) = 7 ([, 1)0e5([rm, 51)-
Then it is clear that S~ M/¢; is an R/vy*-module. |

THEOREM 3.2. There is an R/y*-homomorphism h : M/e* —
S~1M/e;.

Proof. we define h(e*(m)) = €:([m,1]). First we prove that h is well
defined. If €*(m,) = €*(my) then me*m, which holds iff 3z4,... , Tms1;
Ul,y...  Up € U With 7, = My, Tpi1 = Mg such that {zi,zin} C usyi =
1,... ,m which implies {[z;,1], [zi+1,1]} € {((u;,1)) € Us. Therefore
[my, 1)et[ms, 1] and so €}([my, 1]) = €;([m2,1]). Thus b is well-defined.
h is a homomorphism because

h(€*(a) o €*(b)) = h(e*(c)) = €([c, 1]), Vc € €*(a) + € (b),
h(e*(a)) o h(€" (b)) = €5([a, 1)) o ([, 1]) = €;([d, s]),

V(d, s} € €;([a, 1]) ® €([b, 1)),
setting d = ¢ € a+b,s = 1. So it is proved that h(e*(a) o €*(b)) =

h(e*(a)) o h(€*(b)).

And also we have
h(y*(r)0e*(m)) = h(e'(a)) = €([a,1]), Va €7'(r).€"(m),
7 () % (e (m)) = 7*(r) % €x((m, 1) = 73 ([r, )0y, 1) = €5([b, ),
Vb, 5] € 7:([r, 1)) © €3([m, 1]).
Therefore, since we can take b=a € r-m and s = 1, we get
h(v*(r)0e"(m)) = 7" (r) * h(€*(m))
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Hence h is a homomorphism of modules. |
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