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A NEW CHARACTERIZATION OF RULED REAL
HYPERSURFACES IN COMPLEX SPACE FORMS

SEONG S00 AHN, YOUNG SUK CHOI AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give another new char-
acterization of ruled real hypersurfaces in a complex space form
Mn(c), c#0 in terms of the covariant derivative of its Weingarten
map in the direction of the structure vector §.

1. Introduction

A complex n(>2)-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is
denoted by M,(c). A complete and simply connected complex space
form is a complex projective space P,C, a complex Euclidean space C™
or a complex hyperbolic space H,C, accordingasc > 0,c=0o0r ¢ <0.

Now, there exist many studies about real hypersurfaces of My,(c).
One of the first researches is the classification of homogeneous real hy-
persurfaces of a complex projective space P,,C by Takagi [13], who
showed that these hypersurfaces of P,C could be divided into six types
which are said to be of type A;, Az, B,C, D, and E, and in (3] Cecil-
Ryan and [5] Kimura proved that they were realized as the tubes of
constant radius over compact Hermitian symmetric spaces of rank 1
or rank 2 if the structure vector field ¢ is principal. Also Berndt [2]
showed recently that all real hypersurfaces with constant principal cur-
vatures of a complex hyperbolic space H,C are realized as the tubes
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of constant radius over certain submanifolds if ¢ is principal. Accord-
ing to Takagi’s classification theorem and Berndt’s one, the principal
curvatures and their multiplicities of homogeneous real hypersurfaces
of My(c) are given.

As an example of special real hypersurfaces of P,C different from
the above ones, firstly Kimura [6] introduced the notion of ruled real
hypersurfaces in P,C, which is not complete and not principal. Also
Kimura [6] obtained some properties about a ruled real hypersurface M
in P,,C, n>3. In particular, an example of minimal ruled hypersurfaces
of P,,C was constructed. Let Tp be a distribution defined by a subspace
To(z) = {u€T: M : ul{(x)} of the tangent space T, (M), which is called
the holomorphic distribution. The following was proved by Kimura and
Maeda {7].

THEOREM A. Let M be a real hypersurface of P,C, n>3. Then the
second fundamental form is n-parallel and the holomorphic distribution
Ty is integrable if and only if M is locally congruent to a ruled real
hypersurface.

In {1] we also introduced the notion of ruled real hypersurfaces in a
complex hyperbolic space H,C and constructed an example of minimal
ruled real hypersurfaces of H,C by using the submersion compatible
with the fibration n : H f"”"l—»HnC. From this, together with Kimura’s
one, in the paper [12] the third author has given a characterization
of ruled real hypersurfaces M in M,(c) in such a way that its shape
operator A satisfies

where we put
F(X,Y) = B{g(X, D)g(Y, U) + 9(X, $U)g(¥,U)} — $9(#X,Y)

for any vector field X and Y in the distribution Ty except for the case
where the function 3 identically vanishes. Moreover, this expression
of the covariant derivative of the shape operator A will be shown con-
cretely in section 3.
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Now the purpose of this paper is to give another new characteriza-
tion of ruled real hypersurfaces in complex space forms M, (c) as the
covariant derivative of the shape operator A along the direction of &.
Namely, we assert the following

THEOREM. Let M be a real hypersurface of My(c), c£0, n>3. If it
satisfies

(1.2) (VeA)X = *{g(X,4U)U + g(X,U)¢U},

provided that da(§)7#0 for any vector field X in the distribution Ty,
where A denotes the shape operator, then M is locally congruent to
a ruled real hypersurface in M, (c), on which its mean curvature h is
constant along the distribution Tj.

In section 3 some fundamental properties about ruled real hypersur-
faces in My(c), c#0 will be recalled and the covariant derivative of the
shape operator A in the direction of the structure vector field ¢, which
is given in (1.2), will be explicitly expressed. By paying attention to
this formula another new characterization of ruled real hypersurfaces
in Mp(c) will be given in section 4.

2. Preliminaries

First of all, we recall basic properties of real hypersurfaces of a com-
plex space form. Let M be a real hypersurface of n(>2)-dimensional
complex space form My (c) of constant holomorphic sectional curvature
¢(#0) and let C be a unit normal field on a neighborhood of a point z
in M. We denote by J an almost complex structure of M,(c). For a
local vector field X on a neighborhood of = in M, the transformation
of X and C under J can be represented as

JX =¢X +n(X)C, JC=-¢,

where ¢ defines a skew-symmetric transformation on the tangent bun-
dle TM of M, while n and ¢ denote a 1-form and a vector field on
a neighborhood of z in M, respectively. Moreover, it is seen that
9(§,X) = n(X),where g denotes the induced Riemannian metric on
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M. By properties of the almost complex structure J, the set (¢,€,7,9)
of tensors satisfies

¢2 =-I+ "7®§’ o€ =0, 77(¢’X) =0, 77(5) =1,

where I denotes the identity transformation. Accordingly, the set is so
called an almost contact metric structure. Furthermore the covariant
derivative of the structure tensors are given by

21) - (Vx9)Y =n(Y)AX - g(AX,Y){, Vx{=9¢AX,

where V is the Riemannian connection of g and A denotes the shape
operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional cur-
vature c, the equation of Gauss and Codazzi are respectively given as
follows
(2.2)

R(X,Y)Z =3{9(Y, 2)X - 9(X, 2)Y + (oY, 2)¢X ~ ¢(6X, Z)$Y

—29(¢X,Y)pZ} + g(AY, Z)AX — g(AX, Z)AY,

(23) (VxA)Y - (VyAX = L{n(X)gY —n(Y)$X —29(¢X,Y)e},

where R denotes the Riemannian curvature tensor of M and VxA
denotes the covariant derivative of the shape operator A with respect
to X.

The second fundamental form is said to be 7n-parallel if the shape
operator A satisfies g((VxA)Y, Z) = 0 for any vector fields X,Y and Z
in To.

Next we suppose that the structure vector field £ is principal with
corresponding principal curvature a. Then it is seen in [4] and [8] that
o is constant on M and it satisfies

(2.4) ApA =S4+ —;-a(agb + 6A).
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3. Ruled Real Hypersurfaces

This section is concerned with necessary properties about ruled real
hypersurfaces. First of all, we define a ruled real hypersurface M of
M, (c), ¢#0. Let v : I-M,(c) be any regular curve. For any t(€I) let
M,(lt_)l(c) be a totally geodesic complex hypersurface through the point
v(t) of Mp(c) which is orthogonal to a holomorphic plane spanned by
v'(t) and Jv'(t). Set M = {xeM,(lt_)l(c) : tel}. Then the construction
of M asserts that M is a real hypersurface of M,,(c). Under this con-
struction that the ruled real hypersurface M of My(c), c#0, has some
fundamental properties.

Let us put A = af + BU, where U is a unit vector orthogonal to £
and a and ((f#0) are smooth functions on M. As is seen in (7], the
shape operator A satisfies

(3.1) AU =3¢, AX =0

for any vector field X orthogonal to € and U. It turns out to be
(3.2) ApX = —Bg(X,dU)E, pAX =0, XeTp,

which implies that

(3.3) 9((Ap — 0A)X,Y) =0,X,YeTh.

Because of

(Leg)(X,Y) = Le(9(X,Y)) —9(LeX,Y) — g(X, LcY)
= Q(VXﬁ, Y) + g(X7 VYE))
the above equation is equivalent to
(34) (ng) (X’ Y) =0, X’ YGTO'

Next the covariant derivative Vx A with respect to X in Tp is ex-
plicitly expressed. It is seen in [6] and [7] that the second fundamental
form is 7-parallel. Also the equation (2.3) of Codazzi gives us to

(VxA)E - (VeA)X = —gqsx.
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By the direct calculation of the left hand side of the above relation and
using the property Vx¢ = #AX =0 in (3.2), we get

(3.5) da(X)¢ +dB(X)U + f¢x + BV xU — Ve(AX) + AVeX =0,

for any X in Tp. Let T be a distribution defined by a subspace T3 (z) =
{ueTo(z) : g(u,U (a:)) = g(u,pU(z)) = 0}. Since AX is expressed
as the linear combination of £ and U by (3.1), we can derive from
(3.1),(3.2) and the above equation the following relations:

(182 - §)¢Xa X = Ua

(3.6) BVxU =1 0, X = ¢U;
—§¢X, XeTy,
0, X =U,
3.7) d(X) =3 B +5, X=oU;
0, XeTh.

Using these relations we can obtain the components of (VxA)Y in the
direction of £. In fact, we have

9((VxA)Y,£) = g((VxA)E,Y) = g(Vx(AE) — AVxE,Y)
=dp(X)g(Y,U) + Bg(VxU,Y),

which yields combining with the above equation that

(38) (VXA)Y = f(X7 Y)&v Xa YETO’
where we put

f(X,)Y)
(3.9)

= B{9(X, V)g(Y,6U) + 9(X, $U)g(Y, U)} - 19(X.Y).

which means that A is n-parallel.
Accordingly, by the equation of Codazzi (2.3) and the above equa-
tions it can be easily seen that the shape operator of M satisfies

(3.10) (VeA)X = {g(X,9U)U + g(X,U)$U},

when its mean curvature h = « is constant along the distribution Tp.
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4. Proof of the Theorem

In this section we are only concerned with the proof of Theorem. Let
M be a real hypersurface of M,(c), ¢#0, n>3. Throughout this section
we assume that the structure vector field £ is not principal. Then we
can put

A€ = af + (U,

where U is a unit vector in the holomorphic distribution Ty and a and 3
are smooth functions on M. We may consider that the function 3 does
not vanish identically on M. Let My be an open set of M consisting of
points  at which §(z)#0. In other words, the subset My is not empty.
Furthermore we assume that the following condition:

(41)  (VeA)Y = B*{g(Y,6U)U + g(Y,U)U}, YeT.

First of all, from (4.1) we derive the relation in which the derivative
of the shape operator is not contained.

LEMMA 4.1. On the subset My we have
(42) do(§)(Ad + 9A) X
=20%{g(X, ¢U)A¢U — g(AX, ¢U)¢U} — Bder(£)g(X, U )E
for any vector field X in Ty.

Proof. Under the assumption (4.1) and by the assistance of (2.3) it
turns out to be

(43)  (VrA)E = B{g(Y,6U)U + g(Y,U)gU} - Z4Y

for any vector field Y in Ty. Differentiating this equation with respect
to X covariantly and taking account of (2.1), we get

(VxVyA) + (Vy, v A+ (VyA)pAX
=dB*(X){g(Y,oU)U + g(Y,U)¢U}
+ B2 [{9(VxY,¢U) + g(Y,pV xU) YU + g(Y, ¢U)V xU
+{9(VxY,U) + g(Y,VxU)}oU
—9(Y,U)g(AX,U)¢ + g(Y,U)pV xU]

+7{9(4X, )¢ - ¢V x Y}
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for any vector fields X and Y in Tj. For any vector field Z the orthogonal
decomposition in the direction of £ is expressed as

Z= (Z)O + g(Z7§)§7

where (Z)o denotes the Tp-component of Z. Since the component of
the vector VxY in the direction of ¢ is given by —g(¢AX,Y) by the
first equation of (2.1), we have the following orthogonal decomposition

VxY = (VxY)o — g(pAX,Y)E.

Using the above orthogonal decomposition and taking account of
(4.3) itself, we get directly

(4.4)
(VxVyA)§ =9(¢pAX,Y)(VeA)E — (Vy A)pAX
+de*(X){g(Y,U)U + g(Y,U)¢U}
+ B {g(Y,¢VxU)U + g(Y, 9U)VxU + g(Y, VxU)pU
= g(Y,U)g(AX, V) + g(Y,U)pVxU} + Z9(AX, Y )£
for any vector fields X and Y in Tp.

On the other hand, it is well known that the Ricci formula for the
shape operator A is given by

(VxVyA)Z — (VyVxA)Z = R(X,Y)(AZ) - A(R(X,Y)Z)

for any vector fields X,Y and Z. Accordingly, putting Z = £ in the
above Ricci formula, taking X and Y in the distribution Tp and taking
account of the Gauss equation (2.2) and (4.3) imply
(4.5)

9((Ad + ¢A)X,Y) (Ve A) + (Vx A)pAY — (Vy A)pAX

=2 {9(Y, 40X - o(X, 46)Y
+ 9(8Y, ASX — g(6X, AS)SY — 29(¢X,Y)PAL)
— 9(Y, A APX + g(X, A A’Y + g(¥, A§)AX ~ g(X, A%¢)AY
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— dB*(X){g(Y,oU)U + g(Y,U)U}
+dB*(Y){9(X,9U)U + g(X,U)¢U}
+B[9(X,¢VyU)U + g(X, ¢U)VyU
+ g(X,VyU)oU + g(X,U)¢VyU
—g(Y,¢VxU)U — g(Y,¢U)VxU
- g9(Y,VxU)oU — g(Y,U)¢VxU
+{g(Y,U)g(AX,U) — g(X,U)g(AY,U)}¢]

for any vector fields X and Y in T.

Now, in order to prove Lemma 4.1, we shall express (4.5) with the

simpler form. From now on we shall discuss on the open set My =
{zeM : B(z)#0}. By the form A¢ = af + BU we have

A% = o*¢ + ofU + BAU.

Accordingly, by substituting the above equation into the equation (4.5),
it can be reformed as
(4.6)

9((Ad+ @A) X,Y) (Ve A)E + (VxA)PAY — (Vy A)pAX

=<B{g(Y, D)X — g(X, V)Y — g(Y, V)¢ X
+ 9(X, oU)dY — 29(¢X,Y)oU}
+ B[ - (Y, U)A2X + g(X,U)A%Y + {ag(Y,U) + (Y, AU)}AX
— {ag(X,U) + g(X, AU)}AY]
— dB(X){g(Y,0U)U + g(Y,U)gU}
+dB3(Y){g(X,9U)U + g(X,U)pU}
+ B [9(X,¢VyU)U + g(X,9U)VyU
+ 9(X,VyU)oU + g(X,U)¢VxU — g(Y,¢VxU)U
— 9(Y,pU)VxU — g(Y,VxU)gU — g(Y,U)pV xU
+ {g(Y,U)g(AX,U) - g(X,U)g(AY,U)}¢]

for any vector fields X and Y in T.
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Next we want to calculate the inner product of (4.6) and . For the
reason, we differentiate A{ = af + BU with respect to £ covariantly.
Then by (2.1) we have

(4.7) (VeA) = da(§) + dB(§)U + afigU — BAGU + BV U.

Since it is easily seen by (2.2) and by the choice of the vector field U
that the vectors ApU and V.U are both orthogonal to £, we see

(4.8) 9((V¢A)E, €) = do(8).
On the other hand, (4.3) implies
(4.9)
9((VxA)pAY )

= B*{g(X,U)g(Y, AU) - g(X, U)g(AY, $U)} - Zg(AX.Y),

where the formulas (2.1) and (4.3) have been used. By taking account
of these properties the inner product of (4.6) with £ gives us the similar
equation (4.5). Since Y belongs to the distribution Ty, we find that
(4.2) holds on M) by the above equation. It completes the proof. O

Now let L(§,U,¢U) be a distribution defined by a subspace
L.(&,U, ¢U) in the tangent space T, M spanned by the vectors &(z), U(z)
and ¢U(z) at any point z in M.

LEMMA 4.2. The subbundle L(&,U,¢U) is A-invariant and
¢-invariant on My.

Proof. Suppose that there is a vector field V in the holomorphic
distribution Tp in such a way that AU is expressed as a linear combina-
tion of the vector fields ¢, U and V, where U and V are orthonormal.
Namely, since the shape operator A is symmetric, we may put

(4.10) AU = B¢ + U + 5V,

where v and § are smooth functions on Mp. Putting U in place of X
in (4.2) and using the expression of AU, we get

(411)  da(§) AU = —{26%6g(¢U, V) + yda(£)}¢U — 6da(€)¢V.
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Consequently, acting the linear transformation ¢ to the above equation,
we have

(412)  da(€)PAPU = {26%g(gU, V) + vda(£)}U + Sda(E)V.
Putting X = @U in (4.2) again and making use of the decomposition
of AU and da(£)#0, we get
da(§)$APU = da(€)(YU + 8V) — 25254V,
from which together with (4.12) it follows that
2626{g(8U, VU + ¢V} = 0.

Let M; be an open subset M consisting of points z at which 6(z)#0.
Suppose that M; is not empty. Without loss of generality, we may put
V = ¢U on M; by the above equation. Thus it implies that AU is
contained in the subspace L(§,U, ¢U). Furthermore by (4.11) we have

(4.13) do(§) AU = 6da(&)U ~ {28%6 + vdo(€)}oU

on M;.

On the other hand, by (4.11) we have da(£)A¢U = —yda(§)eU
on Mp — M;. Consequently, (4.13) holds on My. This means that
L(¢,U,¢U) is A-invariant. It is evident that it is ¢-invariant. It com-
pletes the proof of Lemma 4.2. 0

Next, we investigate the mutual relations among the functions a, 3,
7 and 4. First we differentiate AU = 3¢ + U + 6¢U with respect to &
covariantly. Then taking account of (2.1), we get

(4.14) AVU ={dB(§) — B} + dy(§)U
+db6(€)U + YV U + 66V U.

By the forms A = o + BU and AU = B¢+ YU + 6¢U it is easily seen
that the following equations

9(AV U, §) = g(VeU, A€) =0,
9(AVU,U) = 6g(VeU, 9U),
da(€)g(AVU, ¢U) = —{26%5 + vda(€) }9(VU, $U)
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are obtained, where we have used (4.13) to derive the last equation.
Then we consider the inner product of (4.14) and &, U and ¢U, re-
spectively. Taking account of the above three equations, we have the
following mutual relations:

(4.15) dp(§) = Bé,
(4.16) dv(§) = 26g(VU,¢U),
(4.17) do(€)ds(€) = —2{B6 + vda(€)}g(VeU, 9U).

Now we take here the inner product of (4.7) with ¢U. Then the
inner product with the left hand side vanishes identically by (4.1) and
therefore it implies

(4.18) de(§)g(VeU, ¢U) = —26%6 — (o + v)da(§),

where we have used (4.13).

Now let T} be an orthogonal complement in the tangent bundle TM
of the subbundle L(§,U,¢U). Since the distribution L. (£,U,¢U) is
A- invariant by Lemma 4.2, the orthogonal distribution 7} is also A-
invariant and moreover it is ¢-invariant, too. Accordingly, by (4.2), we
have the following.

LEMMA 4.3. The holomorphic distribution Ty is integrable on My,
namely the equation

(4.19) (Ap+ ¢A)X =0, XeT,

holds on Mj.

By differentiating (4.19) with respect to £ covariantly and combining
with (2.1) and (4.1), it implies that

(A¢ + ¢A)V§X =0, XeTy,
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because T} is invariant. Thus the inner product of this equation with
¢ yields

9(VeU,9X) = 0.
Since T} is ¢-invariant, we get
(4.20) 9(VeU, X) =0, XeTh.
Evidently we get
(4.21) g(VeU, ) =0, ¢(VeU,U)=0.
Then (4.20) and (4.21) imply that
(4.22) VU = egl,

where € is a smooth function on My. Accordingly, the equations (4.16),
(4.17) and (4.18) can be rewritten as follows:

(4.16%) dy(€) = 20¢,

(4.17) do(£)dd(€) = ~2¢{B8 + yda(€)},
(4.18") (o +v + €)da(€) = —26%5.

By (4.17’), (4.18’) and the assumption in Theorem we see
(4.23) do(§) = e(la—v+e).

By (4.13) and (4.18’) we get also

(4.24) ApU = 0U + (a+ €)¢U.

On the other hand, differentiating the function g(A¢U,¢U) = a+¢€
with respect to ¢ exteriorly and using (2.1), (4.1) and (4.22) to the
obtained equation imply

d(a+€)(§) = —26e.
From this together with (4.16’) it follows
(4.25) d(a+~+¢€)(§) =0.
Using the some mutual relations obtained above, we have the follow-

ing.
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LEMMA 4.4. The relations

A€ = af + BU, AU = B¢, AU =0,
AX =0, XeT)
dB(Y)=0, a+e=0, YeT1, Y.1¢U

holds on Mjy.

Since T3 is A-invariant, there is a principal vector X in T

with principal curvature A, where X is unit. Then by Lemma 4.3 it
turns out to be A¢pX = —ApX. Differentiating AX = AX with respect
to & covariantly, we have

AV X = dA(§)X + AVeX

by (4.1), which implies that

dA(€) = 0.

On the other hand, differentiating A¢ = a€ + BU with respect to X
covariantly and applying (2.1) and (4.3), we have

BYXU = —(O2 +a)+ §)¢X — da(X)€ — dB(X)U.

Since T} is A-invariant and then ¢-invariant by Lemma 4.2, the vector
V xU is orthogonal to € and U. Furthermore, because it is orthogonal to
U, we get d3(X) = 0. And therefore we see that the above information

{ da(X) =0, dB(X) =0,
BVXU = —(A2+ar+ £)¢X

for any vector field X in 7). Furthermore, differentiating AU = 3¢ +
YU + 6¢U with respect to X covariantly and making use of (2.2) and
(4.27), we have

B(Vx AU =Bdy(X)U + Bd6(X)U + 6(\2 + aX + g)x

F{BA= O+ 72+ X+ 2)}¢>X.
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Thus we get

(4.28) { Bg((Vx AU, X) = 6002 + A+ §),
| BI(Vx AU, ¢X) = B = A+ 7\ +ar+ )

for any unit vector field X in Tj. Similarly, by (4.24) the vector field
A@U is given by 6U + (a + €)¢U and therefore we get

(4.29) { Ba(Vx AU, X) = (-A+a+e)(A +ar+%),
. ,Bg((VXA)(ﬁU’ ¢X) = —6(A2 +a\+ %)

for any unit vector field X in'T3.

Next, we shall consider the equation (4.6) for any unit vector field
X in Ty. Putting Y = U in it and taking account of (4.18) and (4.27),
we have

(VxA)PAU — (Vi A)pAX = B(—22% + V) X.

From this, together with the expressions of AU and 3(V x A)U in above,
it follows

By(VxA)pU —BA(Vy A)pX = Bédy(X)U
+ BOdS(X)PU + 62(A2 + aX + E)X
FO{BA— (A +7)(A2+ar+ z)}¢x
+ 83222 + YN X.

Then, if we take account of (2.3), (4.28) and (4.29) and by the direct
calculation, we see that any principal curvature in T; satisfies the fol-
lowing equation:

244 acd + {82~ 82 + (a + ey + S}a
(4.30) ‘ c
+{=ad® — Py +or(a+ o+ {va+ e -8} =0.

Now, we want to prove the fact that all principal curvatures in the
direction of T} vanish identically on the subset M. First suppose that
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there are a principal curvature A and a point z in My = {zeM :
B(x)#0} at which A(z)#0. For the principal curvature A, there is a
neighborhood U of = in My on which A has no zero points. Then we
lead a contradiction. Since by Lemma 4.3 —A#0 is also principal on
the neighborhood U and also a root of (4.30), it follows

(4.31) aX? + {—ad? — %y + ay(a+€)} = 0.

Differentiating this equation with respect to £ covariantly and taking
account of (4.15), (4.16")~(4.18’), (4.23) and (4.26), we have

(X2 + y(a + €) — 62}da(€) — 26%6(y + €) = 0.
Accordingly we have by (4.31)
(4.32) B*{rda(€) —2ad(y +€)} =0
on M.

We first consider the subset MiNU, where My = {xeMp : 6(x)#0}.
From the above equation together with (4.18’) it follows that

By +al(y+e)(a+vy+e) =0.

Again, differentiating this with respect to € covariantly and taking ac-
count of (4.15), (4.16’), (4.18’) and (4.25), we have

af%6=0

on MinU. This shows that @ = 0 on M1NU. It contradicts to the
assumption of the Theorem.

Next, suppose that the interior of My — M; is not empty. On the
subset we see 870 and § = 0. By (4.32) we have v = 0. Then from (4.31)
we have a = 0 on Int(Mpy — M;)NU. Thus we leads a contradiction.

Therefore it means that for the holomorphic distribution 73
AX =0
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for any vector field X in 73 on M. Then we have
—82 4+ y(a+€) =0

by (4.30). Since the vector field VxY for any X and Y in Tj is expressed
as
c
BYXY = B(VxY); + +{9(6X, YU — g(X,Y)oU)

by (4.27), we have
B(VXAY + ${g(#X,Y)AU — g(X,Y) AU} = 0

where (Z); denotes the Ti-component of the vector field Z. From this
combined with (2.3) it follows that

96X, Y)(yU + 6¢U) =0, X,Y€Th.

Thus we have

on My. By virtue of (4.18°),(4.24) and (4.27), the relations in above
lemma are derived. It completes the proof of Lemma 4.4. 0

Next, after the above preparation we are in position to prove the
main Theorem. Suppose that the interior of M — My is not empty.
On the subset the function B vanishes identically and therefore { is
principal. It is seen in [4] and [8] that the principal curvature o is
constant on the interior of M — My, because this is a local property.
Thus we have

(Vx A + AVxE =aVx§.

Since it can be easily seen that Codazzi equation (2.3) and the as-
sumption of the Theorem imply

) 1
(VxA) = —Zc¢X.
Accordingly, by (2.1), we know that the above equation is equivalent to
1
APAX = apAX + ZC¢X .
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On the other hand, on the subset M — Mj it is seen that the equation
(2.4) holds, namely we see

1 1
ApA = Zcqﬁ + Eca(A¢> + ¢A),
and therefore from the above two equations it follows that
(4.33) a(Ap—pA)X =0

on the interior of M —Mj. Suppose that « is not zero. For any principal
vector X in Tp with principal curvature )\, we have

(2)\ — a)A¢X = (%c + a)\) oX.

Using (4.33) and the above equation, we get
(4.34) 4X2 —4ad—c=0,

from which it follows that all principal curvatures are non-zero constant
on the interior of M — Mp. In the case where o = 0, we have \2 = %
which means that all principal curvatures are non-zero constant on the
interior of the subset M — M. Since we have supposed that the set My

is not empty, the equations in Lemma 4.4 means that
AX = 0, X €T1

on Mp. So, by means of the continuity of principal curvatures, (4.34)
and the above equation lead a contradiction.

It shows that the interior of M — Mp must be empty. Thus the
open set Mp is dense. By the continuity of principal curvatures again,
we see that the shape operator satisfies the relations in Lemma 4.4
on the whole M. Accordingly we get g(VxY,£) = —g(Vx¢,Y) =
—9(¢pAX,€) =0 by (2.1), which means that VxY — Vy X is also con-
tained in Tp. Hence the distribution 7} is integrable on M. Moreover
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the integral manifold of T can be regarded as the submanifold of codi-
mension 2 in M, (c) whose normal vectors are £ and C. Since we have

g(VxY,8) =g(VxY,£) =0

and _ _
g(VXY: C) = _g(VXC,Y) = g(AX7Y) =0

for any vector fields X and Y in Tp by (2.1) and Lemma 4.4, where
V denotes the Riemannian connection of M,(c), it is seen that the
submanifold is totally geodesic in M, (c). Since Tj is also J-invariant, its
integral manifold is a complex submanifold and therefore it is a complex
space form M,_i(c). Thus M is a ruled real hypersurface. However,
it satisfies the last two equations in Lemma 4.4. So the meaning of
these equations is that the mean curvature h of M is equal to a. Then
we know from (3.9), (3.10) and the equation of Codazzi (2.3) that the
mean curvature h is constant along the distribution Tp.

Conversely, it was shown in section 3 that ruled hypersurfaces of
a complex space form Mp,(c),c#0, whose mean curvature h = « is
constant along the distribution Tp satisfy the condition (1.2) of the
Theorem. It completes the proof of our Theorem. |

REMARK 1. Recently an example of minimal ruled real hypersur-
faces of H,C was constructed by Ahn, Lee and Suh [1]. It satisfies not
only the equations of (4.20), but also da(§) = 0.

REMARK 2. We do not know an example of ruled real hypersurfaces
in M, (c) which satisfies d(£)#0 and (1.2).
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