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SOME RESULTS ON THE COMMUTATIVE PRODUCT
OF DISTRIBUTIONS

BRIAN FISHER AND JOEL D. NICHOLAS

ABSTRACT. The commutative product of the distributions z" Inz
and 27! is evaluated for r = 0,1,2,... . The commutative product
of the distributions z" In(z + i0) and (z + i0) "' is also evaluated
for r = 1,2,... . Further products are deduced.

In the following, we let D be the space of infinitely differentiable func-
tions with compact support and let 7’ be the space of distributions
defined on D. The distributions z™", z;” and zZ" are defined by the

equations

(=1 (I |z|) o (-D)Y(nz,)® . (Inz_)®
R o § | R R (e )|
for r = 1,2,... . Note that Gel'fand and Shilov [5] give a different def-

inition of z;" and zZ". They define the distribution 7", which we here
denote by F(z,,—r), by the equation

(F(z4, 1), 0(2))

_ /0 [cp(z) Z 80(1)(0 (p:__l)i()),)H(l B m)xr—l] dz

forr=1,2,..., where H denotes Heaviside’s function.
It was proved in (3] that

—-r

-r _ ( 1)r¢( 1) r—1
Ty —F($+,—?‘)+——(—TTI)—‘—5( (2),

where .
. i, r=142,...,
o(r) = { 0, r=0.
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Since it is easily proved that
] s £(r) (_l)s,,.! (r—s)
T F(z+’ _T) = F(l‘+, -+ S)v z°4 (CB) = G_T)'(s (z)i

for s=0,1,...,r, it follows that
(_1)r+s¢(r _ l)é(r—s—l)(m)

(r—s—1)! ’
fors=0,1,...,r—landr=1,2,....

Further, the distributions z ! In|z|, z;!Inz, and z_! Inz_ are defined
by the equations

gl Injz| = {(I0® |2]), z7'lnz, =i(n’z,), z'lhz = — l(n?z_)".
Now let p(z) be a function in D having the following properties:
(i) p(x) =0 for |z| > 1,
(ii) p(z) 20,
(iii) p(z) = p(—2),

(iv) /_11 p(z)dz = 1.

Putting d,(z) = np(nz) for n = 1,2,... , it follows that {6,(z)} is a
regular sequence of infinitely differentiable functions converging to the
Dirac delta-function é(z).

If now f is an arbitrary distribution in 7, we define

fa(@) = (f % 02)(z) = (f(2), 6n(z — 1))
forn=1,2,... . It follows that { f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(z).
A first extension of the product of a distribution and an infinitely
differentiable function is the following, see for example [2].

DEFINITION 1. Let f and g be distributions in 2’ for which on the
interval (a,b), f is the k-th derivative of a locally summable function
F in L?(a,b) and g®) is a locally summable function in L(a,b) with
1/p+1/q = 1. Then the product fg = gf of f and g is defined on the
interval (a,b) by

(1) stfl':_r — Z‘IT_H +

k

ta=3 (5)-uymgye.

=0
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The following definition was suggested by Mikusinski [6].

DEFINITION 2. Let fi, fa, g1 and go be distributions in D’ and suppose
that the products f;.g; and fo.g» do not exist. Let fio(z) = (fi * 0a)(x),

f2n($) = (f2 * 6n)(m), gln(x) = (g1 * (Sn)(l'), g2n(x) = (g2 * 511)(‘77) We say
that the sum fi.g1 + fo.go exists as a single entity and is equal to the
distribution h on the interval (a,b) if

Nn:gom<fln(m)gln(x) + f2n(m)g2n(x)’ (p(.’l?)) = (h’(x)’ <P(E)>
for all functions ¢ in D with support contained in the interval (a, b).

We first of all prove the following theorem.

THEOREM 1. Let f and g be distributions and suppose that the
products f.g and f.g' exist. Then the product f'.g exists and

flg=(f9)—-f4d.

Proof. Since f, and g, are infinitely differentiable functions, we have

f,'lgn = (fngn)’ - fng;;

and so for arbitrary function ¢ in D
(fr,ygm (P> = ((fn-gn)/ - fn-g:n ‘P)'
It follows that
r}gg)(fr/:gm CP) = Ji_{g)«fn-gn),(p> - T}i_lgo(fn-g:v Qo>
= ((f.9),0) = {fg,)
and the result of the theorem follows.
We now prove our main theorem.

THEOREM 2. The product (z"In |z]).z7"~! exists and

(2) (z'In|z)).z ' =z In|z|
forr=0,1,2,....
Proof. We put
1/n
(In|z))p = In|z| * 8,(z) = / Inlz — t|6,(t) dt
-1/n
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and
1/n

(2 =271 % 0,(2) = /1/ In |z — t|&),(¢) dt.
Since In |z| and In? |z] are locally summable functions, it follows that
Jim (o)) = 1],
Thus, for arbitrary function ¢ in D, we have
Jim (1n o2, p(e)) = 2 lim (2@ )n, ()
= ((In*|z])', p(2))
= 2(z7"Inla|, p(z))

and equation (2) follows for the case r = 0.

Now suppose that equation (2) holds for some non-negative integer r.
With this r, the product (z"+!In|z|)z™"! clearly exists by Definition 1
and

(™'In|z))z™"! = In|z|.

Further, since z7z7""! = -1

, it follows from our assumption that
(- 1)(2 In o] +27].2") = (r+ 1) In Jo]+27) = (2" In|a])]'.o~"L.
It now follows from Theorem 1 that (z™*!1n|z|).(z~""1) exists and
(@™ Infz)).(z77) = [ el ~ (2™ Ine|)) 27
or equivalently
~(r+ 1)@ nz))r =27 - [(r+ D)z In|z| + 27
and so
(™' Injz|).z 2=z In|z|.
Equation (2) now follows by induction for r = 0,1,2,... .
For our next theorem we need the following distributions.
In’(z +40) = In’|z|+ 2irlnz_ — 7°H(-z),
(z+1i0)"In(z +i0) = z"In(z+i0) = z"In|z| + im(-1)"z"
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forr=0,1,2,... and

(z+i0)" = z-'+’(7;(_ 1; ——60 (),

n\—r . _ -r T —T 772(—1)1' (r-1)
(z +10) ln(a:-l-\zO) = z " Inlz| + (-1)"imwz_ _2(7'—1)!5 (z)

forr=1,2,..., see Gel'fand and Shilov [5].

THEOREM 3. The product [z In(z + 40)].(z + 30)~""! exists and
(3) [z" In(z + 40)].(z + i0)™"~! = (z + 40) " In(z + i0).
forr=0,1,2,.

Proof. We first of all note that In(z + i0) and In*(z + 0) are locally
summable functions and that

(In(z + i0)]? = In®(z + i0).

It follows as above that we can differentiate this equation to give
In(z + i0).(z + i0) ™" = (z + 0)~! In(z + i0),

proving equation (3) when r = 0.

Assume equation (3) holds for some r. The product [z"* In(z+:0)](z+
0)~""! exists by Definition 1 and

[z In(z + i0)](z + i0) "~ = In(z + 40).
Since
[In(z + 40))’ = (z + i0)~!, [(z+i0)7" ) = —(r + 1)(z +i0)"""2,
[ In(z +140)] = (r+ 1)z"In(z + i0) + =",

it follows by induction, as above, that the product [z" In(z + i0)).(z +
40)~"! exists and satisfies equation (3).

COROLLARY 3.1 The products z"..6")(z) and «’,.60)(z) exist and
4) 27 .67 (z) = Lr1§(z),
() 27.0"(z) = §(~1)"8(a),

©) oo = (e Infe]) 8 (z) = (<1 ia
() gz + (_T—f)(z' In|z]).67(z) = 27!
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forr=0,1,2,....
Proof. 1t follows from equation (3) that

(8) (2 In |z| + im(—1)"z"). [x_,_l mr( 1)

=z ' In|z| — inzZ! + L 76(z).

2 50z )]

Expanding the left hand side of this equation, remembering that (<" In |z|).
z7""! = z7'In|z|) and equating the real parts, equation (4) follows. Re-
placing = by —z in equation (4) gives equation (5).

Equating the imaginary parts in equation (8) gives equation (6). Re-
placing z by —z in equation (6) gives equation (7). Note that the left
hand sides of equations (6) and (7) only exist as single entities, the indi-
vidual products not existing.

Equations (4) and (5) were originally given in [2].

THEOREM 4. The products [z7. Inz, — ¢(r)z%].z;™}, [z Inz_ —
(r)z"). 2771, (27 Inz +(—1)"@(r)z" |27 and [z ln.’l: +(=1)"@(r)z"}.
z~™ 1 exist and

(9) [ghlnzy —¢(r)z’ )zt = z'lnzy —P(r)zy! Z al )5( )

(10)" lna_ — o)’z = ' Inz. - dr)e + 3 ?-i’—a(z)
i=1

(11) (@], Iz, + (~1)¢(r)a a7
=z lnz_ + [Z %1 + ¢2(r)]5(x),
(12) [z" Inz_ + (-1)’¢(rz)=;1}.:1::"1
=zs7'Inz_ + [Z i’f(li) +#()]8(2)
forr=0,1,2,..., the sums being erri;)lty when 7 = 0.

Proof. Since Inz, and In?z, are locally summable functions and
(Inz,)? = In’z,, it follows as above that

Inz,.z;'=27'Inz,,
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proving equation (9) when r = 0.
Now assume that equation (9) holds for some positive integer 7. The
product (27 Inz; — @(r + 1)z H]z""! exists by Definition 1 and

[z Inzy — ¢(r + )27 )27 = nz, — ¢(r + 1)H(z).
Formal dlfferentlatlon of this equation gives
(r+ 1)zl Inz, — (’r)z+] 277 = (r+ D[z Inz, — @(r + 1)z ).272
— 23 = ¢(r +1)é(a).
Since the product [z, Inz, — ¢(r)z7].z;""! exists by our assumption, it

follows from Theorem 1 that the product [z7 Inz, —@(r+ 1)z .22
exists and

[xr+1 In T, — ¢("' + 1) r+1] Ir-—2

= [z} Inz, — ¢(r)z ]z + —(r + 1)zt — ¢(r + 1)]6(z)

=z 'lnz, — @(r)z' + Z ¢(z — (r+ 1)z - ¢(r + 1))é(z)

r+1

=z 'lnz, —¢(r+ 1)z +Z¢

and equation (9) follows by induction.
Replacing = by —z in equation (9) gives equation (10).
To prove equation (11), we note that

zl =a" —(—1)"a]

and

2’z =2l = ¢(r)d(z)
from equation (1). Equation (11) now follows from equation (9). Equa-
tion (12) follows from equation (11) on replacing = by —z.
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