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NOTES ON THREE-DIMENSIONAL
WEAKLY SYMMETRIC SPACES

Kazuo KurasHiMa, TAKASHI OGURO AND KOUEI SEKIGAWA

ABSTRACT. In the presemt paper, we describe the action of isom-
etry groups of 3-dimensional weakly symmetric spaces and dassify
3-dimensional connected weakly symmetric spaces. Further, we de-
termine 3-dimensional weakly symmetric spaces in terms of the eigen-
values of the Ricei transformation. ’

1. Introduction

The notion of a weakly symmetric space has been introduced by A. Sel-
berg in 1956 ([4]). His motivation was to generalize the so-called Poisson
summation formula. From his definition, we can easily see that any
weakly symmetric space is Riemannian homogeneous, and furthermore,
that any Riemannian symmetric space is weakly symmetric. Much work
has been done on the harmonic analysis on weakly symmetric spaces.
However, his definition seems to be rather abstract and only a few exam-
ples of non-symmetric weakly symmetric space were known. Recently,
J. Berndt and L. Vanhecke gave the following geometric characterization
of weakly symmetric spaces.

THEOREM 1 ({1]). A Riemannian manifold M = (M,g) is weskly
symmetric if and only if for any two points p, ¢ € M there exists an
isometry @ of M satisfying ¢(p) = q and ¢(g) = p.

They also classified 3-dimensional, connected, simply connected weakly
symmetric spaces.
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THEOREM 2 ([1]). 'A 3-dimensional, connected, simply connected Rie-
mannian manifold is a weakly symmetric space if and only if it is isometric
to one of the following spaces:

(i) a 3-dimensional Riemannian symmetric space,
(ii) the group SU(2) = S® with a left-invariant metric which is known
as the Berger sphere,
(iii) the universal covering space of SL(2;R) with a left-invariant metnc
(iv) the Heisenberg group with any left-invariant.

(More details for (ii)~(iv) will be stated in section 3.)

However, non-simply connected ones have not been classified. One of the
purpose of the present paper is to classify them.

In [1], the proof of Theorem 2 owes a great deal to the classification
of D’Atri spaces, i.e., Riemannian manifolds whose geodesic symmetries
around each point are volume-preserving up to sign (for the definition
of a D’Atri space and further information, see for example [10}). In the
present paper, we give an explicit alternative proof of Theorem 2. We
describe the action of isometry groups and isotropy representations to
construct a reflection fﬁn the tangent space (see Proposition 4 in the next
section). This explicit description enables us to determine 3-dimensional
connected weakly symmetric spaces. We will discuss this in the last sec-
tion. In section 4, we determine 3-dimensional weakly symmetric spaces
in terms of the eigenvalues of the Ricci transformation.

2. Some Properfies of Weakly Symmetric Spaces

In this section, we introduce some characterizations and properties of
weakly symmetric spaces. A trivial consequence of Theorem 1 is

PRroPOSITION 3 ([1]). A Riemannian manifold M = (M, g) is a weakly
symmetric space if and only if for every geodesic v in M there exists an
isometry ¢ on M such that o(y(t)) = y(-1).

From this characterization, it is obvious that if M = (M, g) is a weakly
symmetric space, then for each v € T,M there exists an f in H,, the full
isotropy subgroup at p, such that dfp(v) = —v. Since a weakly symmetric
space is homogeneous and the isotropy subgroup at any two points are
conjugate to each other, we obtain the following.
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PROPOSITION 4 ([11]). Let M = G/H be a homogeneous space. For
a point p € M, we denote by x : H, — GL(T,M) the isotropy represen-
tation of the isotropy subgroup H, at p. If for each v € T,M there exists
an element h € H, satisfying x(h)(v) = —v, then M is weakly symmetric
with respect to any G-invariant Riemannian metric on M.

For the classification problem, the following proposition is very useful.

PROPOSITION 5 ([1]). The Riemannian universal covering space of a
weakly symmetric space is also a weakly symmetric space.

Further, the converse is also true, namely

PROPOSITION 6. A Riemannian homogeneous manifold whose Rie-
mannian universal covering space is weakly symmetric is weakly sym-
metric.

3. Three-dimensional Weakly Symmetric Spaces

In this section, we give an explicit alternative proof of Theorem 2.
First of all, we review the result of [3] and [4].

Let M = (M, g) be a homogeneous Riemannian manifold. We denote
by V and R the Riemannian connection with respect to g and the as-.
sociated curvature tensor of M. A homogeneous Riemannian manifold
satisfies the following condition P(n) for any integer n > 0:

P(n): for each p, ¢ € M, there exists a linear isometry & :
T,M — T,M such that ®*((V*R),) = (V*R), for k = 0,
1, ...,n

I. M. Singer dealt with the converse problem and proved that a con-
nected, simply connected and complete Riemannian manifold satisfying
the condition P(n) for certain n is Riemannian homogeneous ({5]). The
minimum cf such integer n depends on the manifold M, but it is smaller
than m(m — 1)/2+ 1, m = dim M. In dimension 3, the third author
proved the following:

THEOREM 7 ([3]). Let M = (M, g) be a 3-dimensional, connected,
simply connected, complete Riemannian manifold satisfying the condi-
tion P(1). Then M is Riemannian homogeneous, and furthermore, it is
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isometric to one of (I) S*, (IT) R3, (IIT) I3, (IV) M*xR, (V) a group man-
ifold with certain left-invariant metrics which are not symmetric ones,
where M* = S? or H? in (IV).

Further, the same author gave a list of Lie algebras of the full isome-
try groups which acts effectively and transitively on 3-dimensional, con-
nected, simply connected Riemannian manifold ([3}):

i(M, g) ' b | M is diffeomorphic to

(a) so(4) . s0(3) Se
50(3) +R® (semi-direct sum) | 50(3) R?
s0(3,1) 50(3) R3

(b) s0(3)®R - 50(2) S xR
so(2;) @R 50(2) R?
(c) s0(3) K 50(2) S3
so(2,1)®R 50(2) R3
50(2) + b (semi-direct sum) | s0(2) RS

(d) certain Lie algebra {0} R?or S°

Here, i(M, g) is the Lie algebra of the full isometry group I(M,g) of
(M, g), b is the Lie algebra of the isotropy subgroup and b is a certain
Lie algebra (see [4] for more details). From this table, we see that (a) and
(b) correspond to (I)~(IV) in Theorem 7. In case (d), since we consider
a connected and simply connected one, we see that the isotropy group
H must be trivial. Then, the isotropy representation of H is also trivial,
and hence, from Proposition 4, M is not weakly symmetric. Therefore,
it suffices to consider only the case (¢) for our purpose. Here we note
that the Ricci transformation of a manifold of type (c) has two non-zero
distinct eigen-values (see {4}).

Now, we describe the action of isometry groups and isotropy represen-
tation of (ii)~(iv) in Theorem 2 to prove that they are weakly symmetric
spaces. :

Case (ii)

Let G; be the Cartesian product of the special unitary group SU(2)
and the additive group R. The group G; acts transitively on the 3-
dimensional sphere 9% = SU{(2} as follows. Let o and § be arbitrary
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fixed non-zero real numbers satisfying o® + 42 = 1, and for (4,8) e &y
and P € SU(2) we define the action by

(4,6)P = APE (@%&)

i
where E(in) = (eo" eg,,), n € R, and 2 = —1. The isotvopy subgroup
H, at the origin I € SU(2) is H, = { (E(ia6),—06) | 6 € R }. Thus, we
have S® = G/H, and denote by 7 the natural projection from G, onto
G1/H;. The Gy-invariant vector fields

0 i 0 1 i 0 8
el:z’()’ €y = -1 0) €3 = 0 —i)? 64=55

span the Lie algebra ¢, of G, and e — e, generates the Lie algebra b,
of Hy. The inner product (, ) on g, defined by (e;,e;) = d; (4, j = 1,
..., 4) gives rise to a left-invariant metric on G;. By making use of
the orthogonal decomposition g, = m + b;, whére m = span{e;, ey, €9 =
Pes + aes}, we may obtain a Gy-invariant metric g, on SU(2) = Gy/H,
such that (SU(2), g,) is a normal homogeneous Riemannian space. The
Riemannian manifold $° = (SU(2),¢,) is known as the Berger sphere.
By the formulas due to O'Neill ([2]), we may easily see that the Ricci
transformation of §% = (SU(2), g;) has two non-zero distinct eigenvalues
24 and 2(a® + 1) with multiplicity 2. Now, we define 1, : Gy/H; —
Gi1/H, induced by the auytomorphism fi; on G; defined by f;(A,6) =
(A, —8). Then, g, is uy-invariant and the differential map at the origin
n(I) € G1/Hy of py changes the sign of ;, ¢y and leaves e, invariant.
Further, it is easy to see that the isotropy representation of H; is SO(2),
the rotation around ey. Therefore, from Proposition 4, we conclude that
53 = (SU(2), g1) is a weakly symmetric space.

Case (iii)

As a Riemannian universal covering space of the special linear group
SL(2;R), without loss of generality, it suffices to consider

H xR={(2,) cCxR|Imz>0}
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endowed with a Riemannian metric
dz? + dy? dz\*
p="" (d¢ - -—)
Y 2y

where z = 2 +1y, z, y € R. Let G, be the Cartesian product of SL(2; R)
and the additive group R. The group G; acts transitively on H? x R by

((Z Z) t) (2,4) ’}= (a—c——jrz, ¢ +arg(cz +d) + t)

for ((Z Z) ’t) € Gy and (z,¢) € H2 x R. We see that gp is Go-

invariant. The isotropy subgroup at the origin o = (4,0) € H? xR is

_ cosf sing
H2—{((—sin0 c050>’9> QER}

and hence, we have H? x R = G/H;. It is straightforward to see that
the Ricci transformation has two distinct eigenvalues 1/8 and —9/8 with
multiplicity 2. The left-invariant vector fields
0 10 _ 0 _ 0

e —y‘é‘;‘i“z‘%, 92—-3/55, €3 = 5%
form a global orthonormal frame field on (H? x R, g2). Now, we define a
map gy : H2 x R — H? X R by pe(z, ¢) = (—2, —¢) = (—z,y, —¢). Then,
go is po-invariant and the differential map of uy at the origin o changes
the sign of (e;), and (e3), and leaves (e3), invariant. Further, it is easy to
see that the isotropy representation of H, is SO(2), the rotation around
(e3)o- Therefore, from; Proposition 4, we conclude that the Riemannian
universal covering space of SL(2;R) is a weakly-symmetric space.

Case (iv)

Without loss of generality, it suffices to consider the Heisenberg group

1 z y
H= 01 z|{z,y,zeR } ~R3
0 01

endowed with a left-invariant metric
g3 = da? + d2* + (dy — zdz)®.

472



Notes on three-dimensional weakly symmetric spaces

We define a homomorphism p : R — Aut(H) by

1l z vy 1 zcost+zsint  y+ o4z, 2)
{0 1 2)1=10 1 —zsint + zcost
0 01 0 0 1
where 0,(z, 2) = —}(2? — 2z%)sintcost — zzsin’t. Let Gs be the semi-

direct product H x, R, namely, H x R with the group structure defined
by (A,t) - (A, t) = (Ap(A"),t + 1) for (A,1), (A, t') € Hx R. We see
that the Riemannian metric g3 is Gs-invariant. The group H x, R acts
transitively on H by

(A4,1)P = Ap,(P)

for (A,t) € H x,R and P € H. The isotropy subgroup of the identity
I e HisHy={(I,t) | t € R} and hence, we have H = G3/Hjs. We may
easily see that the Ricci transformation of (H, g3) has two distinct eigen-
values 1/2 and —1/2 with multiplicity 2. We see that the Gs-invariant
vector fields

_ 0 90 0 _ 0

—5;, ez—x-a—y-+b—z-, 83—55

form a global orthonormal frame field on H. Now, We define a map on

i3 : H— H by
1 z vy 1 —z —y
usl0 1 2] =10 1 =z }.
0 01 0 0 1

Then, g3 is ps-invariant and the differential map of u3 at I changes the
sign of (ey), (e3);r and leaves (ez); invariant. Further, it is easy to see
that the isotropy representation of Hj is SO(2), the rotation around (e3);.
Therefore, from Proposition 4, we conclude that (H,gs) is a weakly-
symmetric space.

€1

4. Eigenvalues of the Ricci Transformation of Weakly Sym-
metric Spaces

From the arguments in [4] and the preceding section, we obtain the
following.
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THEOREM 8. Let M = (M, g) be'a 3-dimensional, connected, simply
connected homogeneous Riemannian manifold. We denote by X; (i =
1,2, 3) the eigenvalues of the Ricci transformation of M. Then we have:

(1) C&SeAlz)\g:Ag:)\.‘ .
M is isometric to S* (A > 0), R® (A =0) or H? () < 0).
(2) Case \y = o =Aand Ag=p# A
If p = 0, then M is isometric to S x R (A > 0) or H2 x R (A < 0).
If A = 0, then M is isometric to a non-symmetric group manifold
with invariant metric on which the identity component of the full
isometry group acts simply transitively. Otherwise (A # 0 and
@ # 0), M is isometric to a 3-dimensional weakly symmetric space.
(3) Case M\ 76 Ao 76‘)\3 ?é _)\1.'
M is isometric to a group manifold with certain invariant metric
which is not symmetric.

For (2), we also remark that if A+ > 0, then M is isometric to a Berger
sphere (case (ii)); if A + ¢ < 0, then M is isometric to the universal
covering space of SL(2, R) (case (iii)) and if A-+p = 0, then M is isometric
to the Heisenberg group (case (iv)).

Finally, we give an immediate consequence of the above arguments.

COROLLARY 9. A 3-dimensional, connected, simply connected Rie-
mannian manifold M = (M,g) is a non-symmetric weakly symmetric
space if and only if M is Riemannian homogeneous and its Ricci trans-
formation has two non-zero distinct eigenvalues.

5. Three-dimensional Weakly Symmetric Spaces

In this section, we give a list of all 3-dimensional, connected weakly
symmetric spaces. For our purpose, the following theorem plays an im-
portant role.

THEOREM 10 ([10). Let M = (M, g) be a Riemannian manifold and
I' a group of isometries of M acting freely and properly discontinuously.
Then, M/T is homogeneous if and only if the centralizer C(I') of T in
I(M, g) acts transitively on M. And, if M /T is homogeneous, then every
element of I is a Clifford translation of M.
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Thus, our problem reduces to determine discrete subgroups I' satisfying
Theorem 10. If M is a simply connected symmetric space, namely if M
is isometric to S3, R3, E3, $? x R or H? x R, then the subgroups I" have
been classified (see {7], [8], [10]). So, it suffices to consider the case where
M is a simply connected, non-symmetric weakly symmetric space (case
(ii), (iii) and (iv) in Theorem 2).

THEOREM 11. In case (ii), I' is one of"

o o {((3 2)9) =5

In case (iii), I is one of

wor w {((s )2

In case (iv), I is one of
1 0 en
{(1,0)} or 01 0)1,0)]|neZ)~2Z,
0 0 1
where ¢ is a non-zero real constant.
Proof. The proof is straightforward. We only prove case (iv). Assume
that I is not trivial. Since I acts freely on H, we see that I is a subgroup
of H x, {0} = H x {0}. The center of H x {0} in G3 = H x,R is
1 0y 10 cn
010),0)lyeR ;. Thus, 01 0}),0}ineZ,,
001 00 1

c € R — {0}, is one of the desired I. Taking into account that H x {0}

acts simply transitively on H, we find that this I is the only non-trivial
one. The remaining cases may be proved in a similar way. O
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