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SOME PERMANENTAL FORMULAS

SUK-GEUN HwWANG AND SuNG-Soo Pyo

ABSTRACT. In this paper, we represent the permanent of a matrix
A as inner products of some vectors or functions by noting that
the permanent of A equals certain coefficients of some polynomials
associated with A.

1. Introduction

For an m x n matrix A = [a;;], m < n, the permanent of A, perA,
is defined as

perA = Z 210(1)320(2) * * * Amo(m)>

where the summation runs over all m-permutations of 1,2,--- ,n [4].
The notion of the permanent plays very important roles in various com-
binatorial problems such as system of distinct representatives (SDR),
matching theory, permutations with forbidden positions, etc. In spite
of such a usefulness, the permanent has the adversity that its evaluation
is not easy. In 1961 Marcus and Newman represented the permanent
function as an inner product on the symmetry class of completely sym-
metric tensors [2], and used it to prove some permanental inequalities
later in [3]. In this paper, we represent the permanent of a matrix A as
inner products of some vectors or functions by observing that the per-

manent of A equals certain coefficients of some polynomials associated
with A.
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2. Permanent as Inner Product of Two Vectors
We begin this section with a lemma.

LEMMA 1. Let kg, k1, -- ,kn_1 be nonnegative integers such that
ko+ky + - +kn1=n. Then kg2° + k12! +---+ k, 2" =27 -1
if and on]y if(ko,]cl,-- . ,kn——l) = (1,1,-'- ,1).

Proof. For an integer s, let w(s) denote the number of 1’s in the
expression of s in the binary number system. Let Iy,ls,- - ,ln be non-
negative integers which may or may not be all distinct. We first note
that w(2!* + 22 ... + 2!m) cannot exceed m. For, if l1,lz, -+ , I are
all distinct, then certainly w(2* + 22 + ... + 2!=) = m. If there are
two same numbers among lq,ls,- - ,ln, say, Iy = [z for example, then
2l 4 ol = Q2+l 5o that 21 + 202 4 ... 4 2lm = 2lzH1 4 2ls 4 ... 4 OIm,
and the assertion follows by induction. Assume that

(1) ko2l + k12t 4+ g2V =27 — 1

Since 2™ —1 is an odd number, we see that kg is an odd number. Suppose
that ko # 1. Then ko2° + k12t + -+ + kpu12" 71 = 20 4 ((ko — 1)/2 +
k1)21 4+ 4+ kp_120l. Thusn = w(2® —-1) = w(20 + ((ko — 1)/2 +
k)2t + o+ k127 <1+ (ko —1)/2+ k1) + ko + - + kny =
n — (ko —1)/2 < n, a contradiction. Hence it must be that ko = 1, and
(1) reduces to k120 + ko2 +- - - + ky,12""2 = 2"~1 — 1. Thus it follows
that (ki,k2, - ,kn—1) = (1,1,---,1) by induction, and the proof of
‘only if ’ part is complete. The ‘if’ part is trivial. O

Let X, = diag(1,z,22° ~1,---,22"  —1) where z is a real variable.
For an n x n matrix A, let

fA(iL') = H ri(AX'n)a
i=1

where and in the sequel, for a matrix B, r;(B) denotes the ith row
sum of B. The degree of the polynomial f4(x) is less than or equal to
n(2"~! —1). Let n be fixed and let d = n(2"~! — 1) + 1 from now on in
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the sequel. Let a = (o, az,‘- -+ ,aq)T be any fixed real d-vector with
o1,0a2,- -+ , a4 being mutually distinct real numbers, and let

(z—on)- (2~ aim)(@ = @ip1) - (2 = @a)
(ai - al) cee (ai - ai—l)(ai - ai+1) te (ai - Otd)’
fori= 1,2,---,d.

Li(z) =

Let ¢; be the coefficient of 22"~ in L;(x) for i = 1,2,--- ,d, and
let ca = [c1,C2,++ ,c4]T. For vectors u and v, let u-v denote the
Euclidean inner product of u and v. Now we are ready to give one of
our main theorems.

THEOREM 2. Let a = (ay,09, - ,a4)T and ca = [c1,¢0, -+ ,cq]T
be vectors defined as above. Then for any n x n matrix A, we have

(2) perA = [fa(e), fa(az), -, fa(@a)]T - ca.

Proof. Let A = [a;;]. We first show that the coefficient of 22" 1 in

(3) z"fa(@) =[] aa®

i=1j=1

equals perA. Note that H?zl 227" = 22"-1. The degree of each of
the n™ terms in the product (3) is a number of the form k¢2° + k12! +
oo+ kp-12"1 with ko, k1, ,kn—1 being some nonnegative integers
such that kg + k1 + - - - + kn—1 = n. In order for a term, thus appeared,
to be of degree 2™ — 1 it is necessary and sufficient that k920 + k12! +
cor + kpo12™! = 2™ — 1, or equivalently that (ko,k1, - ,kn-1) =
(1,1,---,1) by Lemma 1. Thus we see that perA equals the coefficient
of 22" =1 in &"f4(x) which equals that of z2" ™! in f4(z). Since

d
fa(@) = fa(es)Li(),
j=1
by Lagrange interpolation formula, we have the theorem. 0
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In 1963, H. Ryser gave the following formula for evaluating the per-
manent, with a proof based on the inclusion-exclusion principle [5].

Ryser’s formula] For an m x n matrix A = [a;;], m <n,
j

(4) perA = Z () Y Hr, (B),

BeAp_ji=1

where Ay denote the set of all m x k submatrices of A, and r;(B) denotes
the ith row sum of B.

In case that m = n, the formula (4) reduces to

(5) perd = Z( y Y [In@).

BeAy . ji=1

The number of multiplications needed in (5) is (n — 1)(2™ — 1) which is
roughly exponential in n. One might have expected some other formula
in which the number of necessary multiplications is polynomial in 7.
However it has turned out that such an expectation is impossible. In
fact, in 1979, L. G. Valiant [6] proved that the evaluation of the per-
manent of a square (0, 1)-matrix is a #P-complete problem, a problem
which is as hard as an NP-complete problem. He also showed that
the permanent of a square matrix X of order n can be evaluated by
calculating the determinant of a matrix Y of order m associated with
X where m is a constant times n22”. So far Ryser’s formula is the
best known computational procedure for the permanent [1]. In view
of the above paragraph, we believe that the formula given in Theorem
2 has also some importance as far as the computational complexity is
concerned. Note that the numbers o; in the formula (2) can be taken
freely. So we may take, for example, a; = ¢, for i = 1,2, --- ,d, in which
case the formula (2) becomes

perA = [fa(1), fa(2),-- , fa(@)T - er,c2,- -+ ,ea)T,
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where
k-1 d
1 1

e (M5 ) [ 1T #55
=ik ) ok B
.(—1)ﬁaﬁ([1,2,... Jk—1,k+1,---,d)
(_1)n-—k+1

= T or L2 k= Lkt d)

with 8 =d — 2" + n+ 1 and o3 being the f-th elementary symmetric
function. If we calculate ¢;, ¢z, -+ ,cq in advance and store them in
a computer, then to evaluate the permanent of a matrix A, all we
need is to calculate the values fa(l), fa(2),---,fa(d) and the inner
product. The number of multiplications needed here is (n — 1)2d +d =
(n? —2n 4+ 2)(n2" ! —n 4 1).

Let B be a square matrix of order m < n, and let

B O
c=[2 2]

Then perB = perC. Let D be a rectangular matrix of size m x k with
m < k <n, and let

D 0]
E= [Jn—m,k Jn—m,n—k] ’

where Jp, , denotes the p x ¢ matrix of 1’s. Then perD = (1/(n —
m)!)perE. Thus we see that the stored vector [c;,cp,- -+ ,c4]” can be
used to calculate the permanent of every matrix of size m x k with
m<k<n.

3. Permanent as Inner Product of Gradients and Vectors

In this section we derive the permanent of a square matrix in con-
nection with the differentiation and inner product.
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Again let n be a fixed positive integer and let z1,z2,- - - , Ty be inde-
pendent variables. Let X = diag(z1,2, -+ ,Z»). For an n x n matrix
A = [a;j], let
(6) pA(:L'lny)"' ’mn) = HT,(AX)

i=1

Observe that
6n
aiL'na.’L‘n_l s 8(1:1

(7) perA: pA($1)x2>”' a“’n),

because the coefficient of the term z;xs - - -z, in the expansion of (6)
equals perA.

THEOREM 3. Let f(y1,Y2,"** yYn) = Y1Y2 -+ Yn. Then for anynxn
matrix A = [ay,ag,- - ,a,|, we have

perA=V(---V(Vf-a1)-az):--+)-apn.

PTOOf. Let A[xlaa:?’”' amn]T = [y17y27"' ,yn]T- Then f(yl;yZa

,yn) =p,4(:1:1,a:2, 7m’n) and
Oyi _ L
—a?j_au,(l,J-l,2"“ ,’I’L)
so that
Oy Oyz Oyn .
8 o Y92 LTI 4 (i=1.2.-- .n).
( ) [az]7az]7 ’axj aj’(J bt} ,n)

From (7) and (8), we have

of
00T p_1 011

N N BN
- z,,zz Oy, :L:Jl Oy, ilz:l Oyi, Oz, Ox2 oz,
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— L "0 " B Oy, Oyi, dy;.,
Bl 1,,,2:: 0y, 13‘4:‘1 0Yis 122=1 Oy, (Vf-a) Oy Ox3 oz,
_ n o LI 3y13 0y,
B zzzz 0yi., ) 132::1 5 z3v(vf ai) - ap 9z Ba,

and the proof is complete. 0

1)
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