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THE WEAK LAW OF LARGE NUMBERS FOR
RANDOMLY WEIGHTED PARTIAL SUMS

Tae-Sune KiM, Kyu Hyuck CHot AND IL-HYUN LEE

ABSTRACT. In this paper we establish the weak law of large numbers
for randomly weighted partial sums of random variables and study .
conditions imposed on the triangular array of random weights {Wy; :
1 < 7 <n, n > 1} and on the triangular array of random variables
{X,;: 1 £j<n, n>1} which ensure that E?:l Whil Xnj — Bl
converges in probability to 0, where {B,; : 1< j<n, n>1}isa
centering array of constants or random variables.

1. Introduction

Let {X, : n > 1} be a sequence of independent random variables
and {wy; 1 1 < j < n, n > 1} a triangular array of numbers. The
strong laws of large numbers for the weighted partial sums Z?=1 Wi X
are extensively investigated in the literature (see, for example, Stout
(1968), Chow and Lai (1973), Teicher (1985), Yu (1990) and Cuzick
(1995) among others). Let {X,; : 1 < j < n, n > 1} be a triangular
array of random variables. The convergence in probability of weighted
partial sums of the form 377, wy; X, to zero has been studied by sev-
eral authors (see, for example, Jamison, Orey and Pruitt (1965), Pruitt
(1966) and Adler, Rosalsky and Taylor (1991) among others) and the
weak laws of large numbers have been applied to the bootstrap (see, for
example, Athreya (1983), Csorgd (1992) and Arenal-Gutierrez, Matran
and Cuesta-Albertas (1996)).
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In this paper, we study the convergence in probability of Z?zl Wil Xnj
—B,;| to 0, where {B,; : 1 < j < n, n > 1} is a triangular array of num-
bers (or random variables).

In Section 2 we derive conditions on {W,; : 1 < j <mn, n > 1} and
on {X,; : 1 < j <mn, n> 1} which ensure that the weak law of large
number of the form

= P
(1) > Waj |Xnj— Byl — 0
=1

holds for the case where EW,,;’s are constants and in Section 3 we also
construct general conditions which ensure that the weak law of large
numbers (1) holds.

2. Preliminaries

LEMMA 2.1. Let {W,; : 1 < j < n, n > 1} be a triangular array
of random variables with E|W,;| < co. Assume that there exists a
triangular array of constants {a,; : 1 < j < n, n > 1, a,; # 0} such
that for alle > 0

o0 n
(2) DO P{|Waj — EWyjl > elan|} < 0.
n=1 j=1
Then
(3) max |Wa; — EWyl / lan;] = 0.
1<5<n

Proof. By Boole’s inequality for probability measure (2) implies for all
e>0

oo

(4) > P{UL, [ Way — EWpy| Z elansl ]} < o0

n=1
and by the Borel-Cantelli lemma (4) implies for all € > 0
(5) P{U}_, [ [Wnj — EWyj| 2 €lan; | ] i. 0.} = 0.
It follows from (5) that we obtain
>€ }) = 0.

(6) P (lim sup {max Waj = EWnj

oo | 1i<n Qnj
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Hence, the desired result follows. 0

LEMMA 2.2. Let {W,; : 1 < j < mn, n > 1} be a triangular array
of random variables with E|W,;| < o0o. Assume that there exists a
triangular array of constants {a,; : 1 < j < n, n > 1, a,; # 0} such
that for all e > 0

(7) 3 V‘”;z( W)

n=1 j=1

Then (3) holds.

Proof. By Chebyshev’s inequality, (7) implies (2). Hence, the result
follows by Lemma 2.1. O

THEOREM 2.1. Let {X,,;:1 < j < n, n > 1} be a triangular array of
random variables and let {W,; : 1 < j <n, n > 1} be a triangular array
of integrable random weights satisfying the condition that there exists a
sequence of constants {a, : n > 1, a, # 0} such that for all ¢ > 0

® 3 S P{ W= EW 2 ¢lanl} < oo
=1 j=1
Assume
(9) EW,; = a,forall 1<j<n,n>1
and
(10) @ > | Xnj = Bogl = 0.
j=1

Then (1) holds.

Proof. In Lemma 2.1 by putting a,; = a,for1 <j<n, n2>1it
follows from (8) that

(11) a,;! max [Whj — EWpi| — 0.
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First we observe the following equality:
(12) ) Wiyl Xa; — Buyl
j=1

= Z (an h EWnJ) |Xn - an| + Z Ean IXn] - an!
=1 =1
= (Waj — EWyj) [ Xnj — Brjl + an Z | Xn; — Bujl.
j=1

J=1

By (10) the second term on the right-hand side of (12) converges in
probability to 0. It remains to show that the first term on the right-hand
side of (12) converges in probability to 0. To see this, we consider the
following:

j=1

< Z Ian - Ean”an - anl

j=1

n
< max |Wo; — EW,| > 1 Xn; — Byl

i=1

= (a," max |Wy; — EW,1) (anz | Xnj — njl)
7=1

1<j<n

Hence, it follows from (10) and (11) that the right-hand side of (13) also
converges in probability to 0 and the proof of Theorem 2.1 is complete.
O

From Lemma 2.2 and Theorem 2.1 we obtain the following corollary:

COROLLAY 2.1. Let {X,;: 1< j <mn, n> 1} be a triangular array
of random variables and let {W,; : 1 < j < n, n > 1} be a triangular
array of integrable random weights with the condition that there exists
a triangular array of constants {a, : n > 1, a, # 0} satisfying (9) and
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(10). If
10 i §o Var() Var(Wm) -

n=1 j=1
then (1) holds.
THEOREM 2.2. Let {X,;:1<j<n,n>1} bea triangular array of
random variables and let {W,;: 1 < j <n, n > 1} be a triangular array

of integrable random weights. Let {a.,n > 1, a, # 0} be a sequence of
constants satisfying (9) and (10). If

(15) a;' max |Wy; — EWyyl L0

1<j<n

then (1) holds.
Proof.

(16) Zananj ~ Byl

= Z(Wm Wil Xoj = Bujl + 3 _(BWy;)| Xnj = Bl

_7—1 j=1

= Z(Wm — EWn;)| Xnj — Brsl + anz |Xns = Busl-

i=1

The second term on the right-hand side of (16) converges in probability
to 0 by (10). It remains to show that the first term on the right-hand
side of (16) converges in probability to 0. It is clear that

n

> (Wi = EWj)| X — Bl

=1
. ‘
< (a2 max |Wy; — EW,)) (anZLXM- -“anl) L0
=1
by (10) and (15). Hence the desired result follows. 0

Now we extend Theorem 2.2 to the triangular array of constants {ay, :
1<j<n, n>1}.

277



Tae-Sung Kim, Kyu Hyuck Choi and Il-Hyun Lee

THEOREM 2.3. Let {Xp,; : 1<j<n, n>1} and {(W,;:1<j <
n, n > 1} be triangular arrays of random variables. Assume that there
exists a triangular array of constants {a,; : 1< j<mn, n > 1, an; # 0}
satisfying the conditions that for all € > 0

o0 n
(17) Z ZP{ Wi — EWpi| > €lagi| } < oo,
n=1 j=1
(18) EWnj = aqg,
and
- P
(19) Y lan| [Xnj = Byl — 0.
j=1

Then (1) holds.

Proof. According to Lemma 2.1 it follows from (17) that

P
(20) max |an—-Ean| / |anj| — 0.

1<j<n

Now, we consider the following equality:
(21) D Wiy | Xes — Buyl
j=1

=D (Wo; — EW)|Xoj = Bos| + > _(EWis| X — Brs)
=1

i=1

=Y _(Waj = EWy)| X — Bujl + Y _(anj Xnj — Busl ).
J=1 =1

It follows from (19) that the second term on the right-hand side of (21)
converges in probability to 0. It remains to show that the first term on
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the right-hand side of (21) converges in probability to 0. Note that

n

(22) D (Waj — EWn)|Xaj — Bajl

j=1

= (an) " {Wa; = EWnjl| Xnj — Bajl(an;)

J=1

- P
< glfg;[ Wi — EWpsl [ lang] ]Z;[ |an;|| Xnj — Bajl}] — 0
]=

by (19) and (20). Hence the desired result follows. 0O
THEOREM 24. Let {X,,; : 1 <j<m,n>1}and {Wy; : 1 <j<
jl < 0.

n, n > 1} be triangular arrays of random variables with E\W,
If (18), (19) and (20) are satisfied then (1) holds.

COROLLAY 2.2. Let {Xp; : 1 <j<n, n>1}and {Wy;:1 <5 <
n, n > 1} be triangular arrays of random variables satisfying (18) and
(19). It
(

23) max |W,; — EWy; | / |[EW,; —— 0

1<j<n

then (1) holds.

3. Main results

DEeFINITION 3.1. (Lehmann, 1983) A sequence of random variables
{Y,} is said to be bounded in probability if for every € > 0 there exist
positive numbers M and ng such that

P(lY,l > M) < eforalln > ny.

In Theorem 2.2, in order that (1) holds, the expression (15) converges
in probability not necessarily to 0, i.e., if a,; (maxicjcn |Wnj — EWp| )
is bounded in probability then (1) still holds. From this fact we obtain
the following theorem.
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THEOREM 3.1. Let {X,; : 1< j<n, n> 1} and {W,; : 1 < j
n, n > 1} be triangular arrays of random variables. Let {a, : n
1, a, # 0} be a sequence of constants satisfying (10). If

IVIA

(24) a;' max |W,; — a,| is bounded in probability.

1<j<n

Then (1) holds.

Proof. First we observe the following equality:

(25) > Waj | Xnj — Bryl
7=1

= Z(an - an)Ian - Bn]‘ +a, z Ian - Bn.jl
j=1

j=1

the second term on the right-hand side of (25) converges in probability
to 0 by (10). It remains to show that the first term on the right-hand
side of (25) converges in probability to 0. To show this we consider

Z(an = an)|Xnj — Byjl| < Z [Whj — @n||Xnj — Bul
j=1 7=1

< max [Whj—anl X; | Xnj — B

J:
— -1 .
= (a, gljag%lwn] an|)
' (%Z | Xnj — an|> 50
=1
by (10) and (24). Thus the proof is complete. O

Next, by deriving sufficient conditions for (10) to hold we consider
the weak law of large numbers for randomly weighted partial sums of a
triangular array of random variables.

THEOREM 3.2. Let {W,; : 1< j<n, n>1}and {X,;:1<j
n, n > 1} be triangular arrays of random variables and let {a, : n
1, a, # 0} be a sequence of numbers satisfying (24) and

(26) nla,| — 0.

<
2
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Assume

(27) max |X,; — Byj| is bounded in probability.

1<j<n
Then (1) holds.
Proof. It is enough to show that (10) holds according Theorem 3.1.
Note that
1 .
- Zl | Xnj = Bujl < max | Xn; — Bnsl-
J:

Hence,

n 1 n
an Z | Xnj = Brjl = (nan) (;l' Z | Xnj — Byl )
j=1

J=1

p
S (nlaa)) max | Xoj — Byj| — 0

by (26) and (27). Thus the proof is complete by Theorem 3.1. ]

COROLLAY 3.1. Let {W,; : 1 <j<m n2>1}and {X,; : 1<j<
n, n > 1} be triangular arrays of random variables and let {a, : n >
1, a, # 0} be a sequence of numbers satisfying (24) and na, = O(1).
If ‘

P
(28) max | Xn; — Byj| — 0
then (1) holds.
Proof. The proof is similar to that of Theorem 3.2. a

In Theorem 2.4 in order that (1) holds, the expression (20) con-
verges in probability not necessarily to 0, that is, under assumption that
maXigjcn |Whnj — EWyj| / an;| is bounded in probability (1) still holds.

From this fact we obtain the following result.

THEOREM 3.3. Let {X,,; : 1 <j<n, n>1}and {(W,;:1<j<
n, n > 1} be triangular arrays of random variables. Assume that there
exists a triangular array of constants {a,; : 1 < j < n, n > 1} such that

(29) Inax |anj|™" W = an;] is bounded in probability.
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If
= P
(30) Y lanl [ Xns = Bns | — 0
=1
then (1) holds.
Proof.

(31) D Wil Xn; — Bajl

=1

= Z(an - anj)lxnj - anl + Z a’"jIX"j - anl

i=1 i=1

The second term on the right-hand side of (31) converges in probability
to 0 by (30). It remains to show that the first term on the right-hand
side of (31) converges in probability to 0. Note that

(32) Z |Waj — anj|| Xnj — Bujl

j=1

= (lans| ™) (W5 — anjl|an;|| Xn; — Baj)

j=1
n

- P
< lglgfl(lanﬂ ' {Was — anil) D _(lanjl| Xnj — Baj)| ) —— 0
<3< =

by (29) and (30). Thus the desired result follows. a

Finally, corresponding to Theorems 3.1, 3.2 and 3.3 we obtain similar
results respectively:

THEOREM 34. Let {X,; : 1 < j<m, n > 1} and {W,; : 1 <
Jj < mn, n > 1} be triangular arrays of random variables satisfying the
condition that there exists a sequence of constants {a, : n > 1, a, # 0}
such that

(33)  a;' max |W,; — a,| is bounded with probability 1.

" 1<jgn
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Assume
- P
(34) jan| Y [ Xnj = Bosl — 0.
=1

Then (1) holds.

Proof. First, it follows from (33) that {a,'W,,;} is bounded with prob-
ability 1. Hence,

n

Zaglwnj an|Xnj — Bul

i=1

> Wiyl Xnj — Buj
=1

< Claal Y. |Xnj = Bajl == 0
=1
by (34) where C is a constant. g
THEOREM 3.5. Let {Wy; : 1 < j<mn, n>1}and {X,;:1<j<
n, n > 1} be triangular arrays of random variables and {a,, : n > 1, a, #
0} be a sequence of numbers satisfying (26) and (33). Assume

(35) max |X,; — Bpj| is bounded with probability 1.

1<jsn

Then 3% Wy | Xnj ~ Byj| converges to 0 with probability 1.

Proof. Tt follows from (34) that {a,'W,;} is bounded with probability
1. Hence

Z a5 Wijn| Xnj = Brgl

i=1

D Wi | Xnj — Bul
j=1

- 1<jsn

< (C max anJ — anl E Ianf
7=1

< Cmax |X,; — Byj| nla,] — 0

B 1<5<
with probability 1 and the result follows. a

THEOREM 3.6. Let {X,; : 1 <j<n, n>1}and {W,;:1<j<
n, n > 1} be triangular arrays of random variables. Assume that there
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exists a triangular array of constants {a,; : 1 < j < n, n > 1} satisfying
(30). Assume

36) max |an;|" (W,; — an;) is bounded with probability 1
i<sen j j j

Then (1) holds.

Proof. Tt follows from (36) that {a; W} is bounded with probability
1. Hence

Z Wa; |an - an'
j=1

n .
< Y 17 Wajtnj 1 X — Bl
7=1

= P
< C Zlanj”an — Byl — 0
=1

by (30) and the proof is complete. a
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