LOCAL DERIVATIONS OF THE POLYNOMIAL RING OVER A FIELD

Yong Ho Yon

ABSTRACT. In this article, we give an example of local derivation, that is not derivation, on the algebra $F(x_1, \dots, x_n)$ of rational functions in x_1, \dots, x_n over an infinite field F, and show that if X is a set of symbols and $\{x_1, \dots, x_n\}$ is a finite subset of X, $n \geq 1$, then each local derivation of $F[x_1, \dots, x_n]$ into F[X] is a F-derivation and each local derivation of F[X] into itself is also a F-derivation.

1. Introduction

Let R be a commutative ring with unity 1 and X a set of symbols. The free monoid on X is the set G_X of all finite sequences $x_1 \cdots x_n$ of elements from X, including the empty sequence, with the multiplication defined by juxtaposing sequences: $(x_1 \cdots x_n)(y_1 \cdots y_m) = x_1 \cdots x_n y_1 \cdots y_m$, $x_i, y_j \in X$ $(i = 1, \cdots, n, j = 1, \cdots, m)$. Thus, the empty sequence is the unity element of G_X . The free R-algebra on X is the R-algebra RG_X satisfying that every mapping from X to an R-algebra A extends uniquely to an R-algebra homomorphism of RG_X to A. The familiar commutative polynomial ring R[X] can be obtained by a similar construction: let H_X be the free commutative monoid on X. Then $R[X] = RH_X$. If X consists of the distinct symbols $x_1, \cdots, x_n, n \geq 1$, then we will write $R[x_1, \cdots, x_n]$ for R[X] (see [4, p. 6]).

Let A be a commutative R-algebra with unity 1 and M an A-module. An R-linear mapping $d:A\to M$ is called an R-derivation of A into M if d(ab)=ad(b)+bd(a), $a,b\in A$, and an R-derivation $d:A\to A$ is called an R-derivation on A. A couple (M,d) is called a derivation module of A if M is an A-module and d is an R-derivation of A into M. Let

Received March 11, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 16W25, 08B20.

Key words and phrases: free algebra, derivation, universal derivation module, local derivation.

(M,d) and (N,δ) be derivation modules of A. Then an A-module homomorphism $f:M\to N$ is called a derivation module homomorphism if $f\circ d=\delta$, and a derivation module homomorphism which is one-to-one and onto is called a derivation module isomorphism. A derivation module (U,d) of A is said to be universal if for any derivation module (M,δ) of A, there exists a unique derivation module homomorphism $f:(U,d)\to (M,\delta)$.

It is well known (see [2]) that for any commutative R-algebra A with unity 1, there exists a universal derivation module of A, and it is unique up to derivation module isomorphisms. And a universal derivation module (U,d) of A can be constructed in the following way: let $U = A \otimes_R A/J$, where J is the A-submodule of $A \otimes_R A$ generated by all elements of the form $1 \otimes ab - a \otimes b - b \otimes a$, $a,b \in A$, and define $d:A \to U$ by $d(a) = \nu(1 \otimes a)$, $a \in A$, where $\nu:A \otimes_R A \to U$ is the natural module homomorphism. Then (U,d) is a universal derivation module of A.

An R-linear mapping $\alpha: A \to M$ is called a local derivation of A into M if for each $a \in A$, there exists an R-derivation $\delta_a: A \to M$ such that $\alpha(a) = \delta_a(a)$, and a local derivation $\alpha: A \to A$ is called a local derivation on A.

Every derivation is a local derivation but the converse is not true, in general. The example is constructed by C. U. Jensen (in response to question raised during a recture in Copenhagen in 1986). This example uses the algebra $\mathbb{C}(x)$ of rational functions in one variable x over the field \mathbb{C} of complex numbers [3]. This adds further interest to determining the local derivations of the polynomial rings over \mathbb{C} and any field F. Richard V. Kadison showed that each local derivation of $\mathbb{C}[x_1, \dots, x_n]$ into $\mathbb{C}[x_1, \dots, x_m]$ is a \mathbb{C} -derivation, where n and m are positive integers with $1 \leq n \leq m$ [3]. And the similar results for the polynomial rings over an algebraically closed field are proved in [5, p. 32-41].

In this paper, with any infinite field F, we show that a F-linear mapping α of $F(x_1, \dots, x_n)$ into itself is a local derivation if and only if $\alpha(c) = 0$ for all constant $c \in F(x_1, \dots, x_n)$, where $F(x_1, \dots, x_n)$ is the algebra of rational functions in x_1, \dots, x_n over F, and give an example of a local derivation on $F(x_1, \dots, x_n)$ that is not F-derivation. Next, it is proved that if $\{x_1, \dots, x_n\}$ $(n \ge 1)$ is a finite subset of a set

X of symbols, then each local derivation of $F[x_1, \dots, x_n]$, and of F[X], into F[X] is a F-derivation. Throughout this paper, F is an infinite field and X is a set of symbols.

2. Local derivations of the algebra of rational functions over a field

In this section, $F(x_1, \dots, x_n)$ will denote the algebra of rational functions over F in a set $\{x_1, \dots, x_n\}$ of variables.

PROPOSITION 2.1 ([1]). Let R[X] be a polynomial ring over a commutative ring R with unity. If U is a free R[X]-module with a basis $\{u_x: x \in X\}$, where $u_x = u_y$ if and only if x = y for $x, y \in X$, and $d: R[X] \to U$ is an R-derivation defined by $d(f) = \sum_{x \in X} (\partial f/\partial x) u_x$, $f \in R[X]$, then (U, d) is a universal derivation module of R[X].

Let (U,d) be the universal derivation module (in Proposition 2.1) of $F[x_1,\cdots,x_n]$. Then $d(x_i)=\sum\limits_{j=1}^n\frac{\partial x_i}{\partial x_j}u_{x_j}=\frac{\partial x_i}{\partial x_i}u_{x_i}=u_{x_i},\ i\in\{1,\cdots,n\}$. If δ is a F-derivation on $F[x_1,\cdots x_n]$, then there exists a unique $F[x_1,\cdots,x_n]$ -module homomorphism $\phi:U\to F[x_1,\cdots,x_n]$ such that $\phi\circ d=\delta$, whence $\delta(x_i)=\phi(d(x_i))=\phi(u_{x_i}),\ i\in\{1,\cdots,n\}$, and we have that

$$\delta(f) = \phi(d(f)) = \phi(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} u_{x_i}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \phi(u_{x_i}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \delta(x_i),$$

 $f \in F[x_1, \dots, x_n]$. Hence for any F-derivation δ on $F[x_1, \dots, x_n]$, $\delta(f) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \delta(x_i), f \in F[x_1, \dots, x_n]$.

LEMMA 2.2. Let δ be a mapping of $F(x_1, \dots, x_n)$ into itself. Then the following two conditions are equivalent:

(1)
$$\delta(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \delta(x_i)$$
 for all $f \in F(x_1, \dots, x_n)$,

(2) δ is a F-derivation.

Yong Ho Yon

Proof. Let $\delta: F(x_1, \dots, x_n) \to F(x_1, \dots, x_n)$ be a mapping satisfying that $\delta(f) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \delta(x_i), f \in F(x_1, \dots, x_n)$. Then δ is a F-linear mapping and we have that

$$\begin{split} \delta(fg) &= \sum_{i=1}^{n} \frac{\partial (fg)}{\partial x_{i}} \delta(x_{i}) = \sum_{i=1}^{n} \left(f \frac{\partial g}{\partial x_{i}} + g \frac{\partial f}{\partial x_{i}} \right) \delta(x_{i}) \\ &= f \left(\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \delta(x_{i}) \right) + g \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \delta(x_{i}) \right) \\ &= f \delta(g) + g \delta(f), \end{split}$$

 $f,g \in F(x_1,\dots,x_n)$. Hence δ is a F-derivation on $F(x_1,\dots,x_n)$. Conversely, let δ be a F-derivation on $F(x_1,\dots,x_n)$, and if p is a non-zero polynomial in $F[x_1,\dots,x_n]$, then

$$0 = \delta(1) = \delta(pp^{-1}) = \delta(p)p^{-1} + p\delta(p^{-1}),$$

whence $\delta(p^{-1}) = -\delta(p)p^{-2}$. Thus, for any rational function $f = pq^{-1}$ in $F(x_1, \dots, x_n)$, where $p, q \in F[x_1, \dots, x_n]$ and $q \neq 0$, we have that

$$\begin{split} \delta(f) &= \delta(pq^{-1}) = \delta(p)q^{-1} + p\delta(q^{-1}) = \delta(p)q^{-1} - p\delta(q)q^{-2} \\ &= \left[\sum_{i=1}^n \frac{\partial p}{\partial x_i} \delta(x_i)\right] qq^{-2} - p\left[\sum_{i=1}^n \frac{\partial q}{\partial x_i} \delta(x_i)\right] q^{-2} \\ &= \sum_{i=1}^n \left[\left(q\frac{\partial p}{\partial x_i} - p\frac{\partial q}{\partial x_i}\right) q^{-2}\right] \delta(x_i) \\ &= \sum_{i=1}^n \frac{\partial (pq^{-1})}{\partial x_i} \delta(x_i) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \delta(x_i). \end{split}$$

THEOREM 2.3. Let α be a F-linear mapping of $F(x_1, \dots, x_n)$ into itself. Then the following two conditions are equivalent:

- (1) α is a local derivation,
- (2) $\alpha(c) = 0$ for all constant $c \in F(x_1, \dots, x_n)$.

Proof. Let α be a local derivation on $F(x_1, \dots, x_n)$. Then for each constant $c \in F(x_1, \dots, x_n)$, there is a F-derivation δ_c on $F(x_1, \dots, x_n)$ such that $\alpha(c) = \delta_c(c) = 0$.

Conversely, if f is a constant in $F(x_1, \dots, x_n)$, then for any F-derivation δ on $F(x_1, \dots, x_n)$, $\alpha(f) = 0 = \delta(f)$. Let f be a non-constant in $F(x_1, \dots, x_n)$. Then there exists a x_i in $\{x_1, \dots, x_n\}$ such that $\partial f/\partial x_i \neq 0$. Take one of such x_i and we denote it by x, and define a mapping δ_f of $F(x_1, \dots, x_n)$ into itself by following:

$$\delta_f(h) = \frac{\partial h/\partial x}{\partial f/\partial x}\alpha(f)$$

for each $h \in F(x_1, \dots, x_n)$, then δ_f is a F-derivation and we have that

$$\delta_f(f) = \frac{\partial f/\partial x}{\partial f/\partial x} \alpha(f) = \alpha(f),$$

hence α is a local derivation.

We have an example of a local derivation that is not derivation as follows: we can consider $F(x_1, \dots, x_n)$ as a vector space over F. Let X be the (n+1)-dimensional subspace of $F(x_1, \dots, x_n)$ generated by $\{1, x_1, \dots, x_n\}$, Y a complement of X, and $\alpha: F(x_1, \dots, x_n) \to F(x_1, \dots, x_n)$ the projection on Y along X. Then $\alpha(c) = 0$ for all constant $c \in F(x_1, \dots, x_n)$, whence α is a local derivation by Theorem 2.3, but it is not F-derivation, in fact, if α is a F-derivation, then from Lemma 2.2, $\alpha(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \alpha(x_i)$ for all $f \in F(x_1, \dots, x_n)$, and $\alpha(x_i) = 0$, since $x_i \in X$, $i \in \{1, \dots, n\}$. Hence $\alpha(f) = 0$ for all $f \in F(x_1, \dots, x_n)$, in contradiction with $\alpha \neq 0$.

3. Local derivations of the commutative polynomial algebra

If $\{x_1, \dots, x_n\}$ is a finite subset of X $(n \ge 1)$, then F[X] is viewed as a $F[x_1, \dots, x_n]$ -module. Let α be a local derivation of F[x] into F[X] with $x \in X$. Then $\alpha(c) = 0$ for any constant $c \in F[x]$, and for each $k \in \mathbb{N}$ (\mathbb{N} is the set of positive integers), there exists a F-derivation δ_{x^k}

of F[x] into F[X] such that $\alpha(x^k) = \delta_{x^k}(x^k)$. We will denote the δ_{x^k} by δ_k . It is easy to show that a F-linear mapping $\delta: F[x] \to F[X]$ is a F-derivation if and only if $\delta(f) = f'\delta(x)$ for all $f \in F[x]$, where f' is the usual derivative of f, by applying the multiplicative property of the derivation.

LEMMA 3.1. Let α be a local derivation of F[x] into F[X], where $x \in X$. If $\alpha(x) = \delta_k(x)$ for each $k \in \mathbb{N}$, where $\delta_k : F[x] \to F[X]$ is the F-derivation such that $\delta_k(x^k) = \alpha(x^k)$, $k \in \mathbb{N}$, then α is a F-derivation.

Proof. Since $\alpha(x^k) = \delta_k(x^k) = kx^{k-1}\delta_k(x) = kx^{k-1}\alpha(x)$ for each $k \in \mathbb{N}$, we have that

$$\alpha(f) = (a_1 + 2a_2x + \cdots + na_nx^{n-1})\alpha(x) = f'\alpha(f),$$

for $f = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in F[x]$, where f' is the usual derivative of f, hence α is a F-derivation.

THEOREM 3.2. Each local derivation of F[x] into F[X] is a F-derivation, where $x \in X$.

Proof. Let α be a local derivation of F[x] into F[X] with $x \in X$. Then for each $j \in \mathbb{N}$, there is a F-derivation $\delta_j : F[x] \to F[X]$ such that

$$\alpha(x) = \delta_1(x)$$
 and $\alpha(x^j) = jx^{j-1}\delta_j(x)$ $(j \ge 2)$.

Let $g_j = \delta_j(x)$, $j \in \mathbb{N}$. Then $\alpha(x^j) = jx^{j-1}g_j$, $j \in \mathbb{N}$, and we shall show that $g_1 = g_2 = \cdots = g_n = \cdots$, whence α is a F-derivation from Lemma 3.1.

Choose a non-zero element a in F and let $p = x^j - a^{j-k}x^k$, $k, j \in \mathbb{N}$. Then $p \in F[x]$ and there is a F-derivation $\delta_{p^2} : F[x] \to F[X]$ such that $\alpha(p^2) = \delta_{p^2}(p^2)$, hence we have that

(1)
$$2p\delta_{p^2}(p) = \delta_{p^2}(p^2) = \alpha(p^2)$$

$$= \alpha(x^{2j} - 2a^{j-k}x^{j+k} + a^{2(j-k)}x^{2k})$$

$$= \alpha(x^{2j}) - 2a^{j-k}\alpha(x^{j+k}) + a^{2(j-k)}\alpha(x^{2k})$$

$$= 2jx^{2j-1}g_{2j} - 2(j+k)a^{j-k}x^{j+k-1}g_{j+k}$$

$$+ 2ka^{2(j-k)}x^{2k-1}g_{2k}.$$

Local derivations of the polynomial ring over a field

With x replaced by a in (1), we have that

$$0 = 2a^{2j-1} \left[jg_{2j} - (j+k)g_{j+k} + kg_{2k} \right]_{x=a},$$

since the left side of (1) is 0, for p(a) = 0, whence

$$0 = [jg_{2j} - (j+k)g_{j+k} + kg_{2k}]_{x=a}.$$

Since a is arbitrary non-zero element in F,

$$0 = [jg_{2j} - (j+k)g_{j+k} + kg_{2k}]_{x=a}$$

for all non-zero $a \in F$. Hence $0 = jg_{2j} - (j+k)g_{j+k} + kg_{2k}$ in F[X] and it follows that

(2)
$$(j+k)g_{j+k} = jg_{2j} + kg_{2k}.$$

For any $k \in \mathbb{N}$ and non-zero $a \in F$, let $q = 1 - a^{-k}x^k$. Then $q \in F[x]$ and there is a F-derivation $\delta_{q^2} : F[x] \to F[X]$ such that $\alpha(q^2) = \delta_{q^2}(q^2)$. Proceeding as in the computation of (1), we have that

(3)
$$2q\delta_{q^2}(q) = -2k(a^{-k}x^{k-1}g_k - a^{-2k}x^{2k-1}g_{2k}),$$

and with x replaced by a in (3), $0 = a^{-1} [g_k - g_{2k}]_{x=a}$, for q(a) = 0, hence $0 = [g_k - g_{2k}]_{x=a}$ for all non-zero $a \in F$, whence it follows that $g_k - g_{2k} = 0$ in F[X] and

$$(4) g_k = g_{2k}.$$

If j = k + 1 in (2), then we have that

(5)
$$(2k+1)g_{2k+1} = (k+1)g_{2k+2} + kg_{2k}.$$

We shall show that $g_1 = g_2 = g_3 = \cdots = g_{2n-1} = g_{2n} = g_{2n+1} = \cdots$ by induction in n.

If k = 1 in (4) and (5), then $g_1 = g_2$ and $3g_3 = 2g_4 + g_2$, respectively. Since $g_2 = g_4$ by (4), $3g_3 = 3g_2$ and $g_3 = g_2$, hence $g_1 = g_2 = g_3$. Suppose that $g_1 = g_2 = g_3 = \cdots = g_{2k-1} = g_{2k} = g_{2k+1}$, $k \in \mathbb{N}$. Then

Yong Ho Yon

 $g_{2k} = g_{2k+1}$, hence from (5), $(2k+1)g_{2k+1} = (k+1)g_{2k+2} + kg_{2k+1}$, whence $(k+1)g_{2k+1} = (k+1)g_{2k+2}$ and $g_{2k+1} = g_{2k+2}$, hence we have that $g_1 = g_2 = \cdots = g_{2k+1} = g_{2k+2}$. Since $g_{k+2} = g_{2k+2}$ and since $g_{k+2} = g_{2k+4}$ from (4), $g_{2k+2} = g_{2k+4}$. With k replaced by k+1 in (5),

$$(2k+3)g_{2k+3} = (k+2)g_{2k+4} + (k+1)g_{2k+2}$$
$$= (k+2)g_{2k+2} + (k+1)g_{2k+2}$$
$$= (2k+3)g_{2k+2}$$

and $g_{2k+3}=g_{2k+2}$. Hence $g_1=g_2=\cdots=g_{2k+1}=g_{2k+2}=g_{2k+3}$. It follows by induction that $g_i=g_j$ for each $i,j\in\mathbb{N}$.

LEMMA 3.3. Let α be a local derivation of $F[x_1, \dots, x_n]$ into F[X] that satisfies $\alpha(x_j) = 0$ for each $j \in \{1, \dots, n\}$, where $\{x_1, \dots, x_n\}$ is a finite subset of X. If the restriction of α to $F[x_{j(1)}, \dots, x_{j(n-1)}]$ is a F-derivation for all (n-1)-element subset $\{x_{j(1)}, \dots, x_{j(n-1)}\}$ of $\{x_1, \dots, x_n\}$, then the local derivation α is 0.

Proof. Let $\alpha: F[x_1, \dots, x_n] \to F[X]$ be a local derivation such that $\alpha(x_j) = 0, j \in \{1, \dots, n\}$. Then since the restriction of α to $F[x_1]$ is a F-derivation from Theorem 3.2, we have that

(1)
$$\alpha(x_1^k) = kx_1^{k-1}\alpha(x_1) = 0,$$

 $k \in \mathbb{N}$, and since the restriction of α to $F[x_2, \dots, x_n]$ is F-derivation by hypothesis, we have that

(2)
$$\alpha(x_2^{k(2)} \cdots x_n^{k(n)})$$

$$= \sum_{i=2}^n k(i) x_2^{k(2)} \cdots x_{i-1}^{k(i-1)} x_i^{k(i)-1} x_{i+1}^{k(i+1)} \cdots x_n^{k(n)} \alpha(x_i)$$

$$= 0$$

for all non-negative integers k(i) $(i = 2, \dots, n)$.

Let $x_1^{k(1)} \cdots x_n^{k(n)}$ be a monic monomial in $F[x_1, \cdots, x_n]$ with non-negative integers k(i) $(i = 1, \cdots, n)$. Choose any non-zero elements

Local derivations of the polynomial ring over a field

 b_1, \cdots, b_n in F, and let $a = -b_1^{k(1)}b_2^{-k(2)}\cdots b_n^{-k(n)}$ and $q = x_1^{k(1)} + ax_2^{k(2)}\cdots x_n^{k(n)}$. Then a is a non-zero in F and $q \in F[x_1, \cdots, x_n]$. Since α is a local derivation of $F[x_1, \cdots, x_n]$ into F[X], there is a F-derivation $\delta_{q^2}: F[x_1, \cdots, x_n] \to F[X]$ such that $\alpha(q^2) = \delta_{q^2}(q^2)$, and we have that

$$\begin{split} 2q\delta_{q^2}(q) &= \delta_{q^2}(q^2) = \alpha(q^2) \\ &= \alpha(x_1^{2k(1)} + 2ax_1^{k(1)}x_2^{k(2)} \cdots x_n^{k(n)} + a^2x_2^{2k(2)} \cdots x_n^{2k(n)}) \\ &= 2a\alpha(x_1^{k(1)}x_2^{k(2)} \cdots x_n^{k(n)}) \end{split}$$

from (1) and (2), hence it follows that

(3)
$$a^{-1}q\delta_{q^2}(q) = \alpha(x_1^{k(1)} \cdots x_n^{k(n)}).$$

With x_1, \dots, x_n replaced by b_1, \dots, b_n , respectively, in (3), we have that

$$0 = \left[\alpha(x_1^{k(1)}\cdots x_n^{k(n)})\right]_{x_1=b_1,\cdots,x_n=b_n},$$

for $q(b_1, \dots, b_n) = 0$. Since b_1, \dots, b_n are arbitrary non-zero elements in F, $\alpha(x_1^{k(1)} \dots x_n^{k(n)}) = 0$ in F[X] ([6, Th.I.14]). It follows that $\alpha(x_1^{k(1)} \dots x_n^{k(n)}) = 0$ for all monic monomial $x_1^{k(1)} \dots x_n^{k(n)}$ in $F[x_1, \dots, x_n]$, and hence $\alpha = 0$.

Let H_X be the free commutative monoid on X, M an F[X]-module, and φ a mapping of F[X] into M. If $\delta_0: H_X \to M$ is a mapping defined by

$$\delta_0(x_1^{k(1)}\cdots x_n^{k(n)})$$

$$= \sum_{i=1}^n k(i)x_1^{k(1)}\cdots x_{i-1}^{k(i-1)}x_i^{k(i)-1}x_{i+1}^{k(i)-1}\cdots x_n^{k(n)}\varphi(x_i)$$

for any $x_1^{k(1)} \cdots x_n^{k(n)} \in H_X$, then δ_0 has a unique linear extension to a F-derivation $\delta: F[X] \to M$ given by

$$\delta\left(\sum_{i}r_{i}x_{1}^{k_{i}(1)}\cdots x_{n_{i}}^{k_{i}(n_{i})}\right)=\sum_{i}r_{i}\delta_{0}(x_{1}^{k_{i}(1)}\cdots x_{n_{i}}^{k_{i}(n_{i})}),$$

for $\sum_{i} r_{i} x_{1}^{k_{i}(1)} \cdots x_{n_{i}}^{k_{i}(n_{i})} \in F[X]$, and $\delta(x^{k}) = \delta_{0}(x^{k}) = kx^{k-1} \varphi(x)$ for $x \in X$ and $k \in \mathbb{N}$, especially, $\delta(x) = \varphi(x)$, $x \in X$.

THEOREM 3.4. Each local derivation of $F[x_1, \dots, x_n]$ into F[X] is a F-derivation, where $\{x_1, \dots, x_n\}$ is a finite subset of X.

Proof. Let $\alpha: F[x_1, \cdots, x_n] \to F[X]$ be a local derivation. If n=1, the restriction of α to $F[x_j]$ $(j \in \{1, \cdots, n\})$ is a F-derivation from Theorem 3.2. Suppose that the restriction of α to $F[x_{j(1)}, \cdots, x_{j(r-1)}]$ is a F-derivation for all (r-1)-element subset $\{x_{j(1)}, \cdots, x_{j(r-1)}\}$ of $\{x_1, \cdots, x_n\}$ with $r \leq n$. We show that the same is true for all r-element subset of $\{x_1, \cdots, x_n\}$. It will suffice to prove that the restriction of α to $F[x_1, \cdots, x_r]$ is a F-derivation.

Let H be the free commutative monoid on the set $\{x_1, \dots, x_r\}$ and define a mapping $\delta_0: H \to F[X]$ by

$$egin{aligned} \delta_0(x_1^{k(1)}\cdots x_r^{k(r)}) \ &= \sum_{i=1}^r k(i) x_1^{k(1)}\cdots x_{i-1}^{k(i-1)} x_i^{k(i)-1} x_{i+1}^{k(i)-1} \cdots x_r^{k(r)} lpha(x_i), \end{aligned}$$

where the k(i) are non-negative integers. Then δ_0 has a unique linear extension to a F-derivation δ of $F[x_1,\cdots,x_r]$ into F[X] such that $\delta(x_i)=\alpha(x_i),\ i\in\{1,\cdots,r\}$. Since δ and α are a F-derivation and a local derivation, respectively, $\alpha-\delta$ is a local derivation of $F[x_1,\cdots,x_r]$ into F[X] such that $(\alpha-\delta)(x_i)=0,\ i\in\{1,\cdots,r\}$. Since by assumption, the restriction of α to $F[x_{j(1)},\cdots,x_{j(r-1)}]$ is a F-derivation for all (r-1)-element subset $\{x_{j(1)},\cdots,x_{j(r-1)}\}$ of $\{x_1,\cdots,x_r\}(\subseteq\{x_1,\cdots,x_n\}),\ \alpha-\delta$ is a F-derivation of $F[x_{j(1)},\cdots,x_{j(r-1)}]$ into F[X]. It follows that $\alpha-\delta=0$ from Lemma 3.3, and $\alpha=\delta$ on $F[x_1,\cdots,x_r]$, whence α is a F-derivation of $F[x_1,\cdots,x_r]$ into F[X]. \square

Theorem 3.5. Each local derivation on F[X] is a F-derivation.

Proof. Let $\alpha: F[X] \to F[X]$ be a local derivation and H_X a free commutative monoid on X. Define a mapping $\delta_0: H_X \to F[X]$ by

$$\begin{split} \delta_0(x_1^{k(1)}\cdots x_n^{k(n)}) \\ &= \sum_{i=1}^n k(i) x_1^{k(1)}\cdots x_{i-1}^{k(i-1)} x_i^{k(i)-1} x_{i+1}^{k(i+1)} \cdots x_n^{k(n)} \alpha(x_i), \end{split}$$

Local derivations of the polynomial ring over a field

for non-negative integers k(i) $(i=1,\dots,n)$. Then δ_0 has a unique extension to a F-derivation $\delta: F[X] \to F[X]$ such that $\delta(x) = \alpha(x)$ for all $x \in X$. Since α and δ are a local derivation and a F-derivation, respectively, $\alpha - \delta$ is a local derivation on F[X].

Let $x_1^{k(1)} \cdots x_n^{k(n)}$ be a monic monomial in F[X]. Since the restriction of α to $F[x_1, \dots, x_n]$ is a F-derivation from Theorem 3.4, the restriction of $\alpha - \delta$ to $F[x_1, \dots, x_n]$ is also a F-derivation such that $(\alpha - \delta)(x_i) = 0$ for all $i \in \{1, \dots, n\}$, and we have that

$$(\alpha - \delta)(x_1^{k(1)} \cdots x_n^{k(n)})$$

$$= \sum_{i=1}^n k(i) x_1^{k(1)} \cdots x_{i-1}^{k(i-1)} x_i^{k(i)-1} x_{i+1}^{k(i)-1} \cdots x_n^{k(n)} (\alpha - \delta)(x_i)$$

$$= 0.$$

It follows that $(\alpha - \delta)(x_1^{k(1)} \cdots x_n^{k(n)}) = 0$ for all monic monomial $x_1^{k(1)} \cdots x_n^{k(n)} \in F[X]$, hence $\alpha - \delta = 0$ and α is a F-derivation. \square

References

- [1] I. Y. Chung, Derivation Modules of Group Rings and Integers of Cyclotomic Fields, Bull. Korean Math. Soc. 20 (1983), no. 1, 31-36.
- [2] _____, On free joins of algebras and Kähler's differential forms, Abh. Math. Sem. Univ. Hamburg 35 (1970), 92-106.
- [3] R. V. Kadison, Local Derivations, J. of algebra 130 (1990), 494-509.
- [4] R. S. Pierce, Associative Algebras, Springer-Verlag, 1980.
- [5] Y. H. Yon, Algebraic Derivation Modules, Doctoral thesis, Chungbuk National University (1997).
- [6] O. Zariski and P. Samuel, Commutative Algebra, vol. 1, Springer-Verlag, 1975.

DEPARTMENT OF MATHEMATICS, CHUNGBUK NATIONAL UNIVERSITY, CHEONGJU 361-763, KOREA