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CONSTRUCTIONS FOR THE
SPARSEST ORTHOGONAL MATRICES

Gi-SANG CHEON AND BRYAN L. SHADER

ABSTRACT. In [1], it was shown that for n > 2 the least number
of nonzero entries in an n X n orthogonal matrix which is not di-
rect summable is 4n — 4, and zero patterns of the n X n orthogonal
matrices with exactly 4n — 4 nonzero entries were determined. In
this paper, we construct n X n orthogonal matrices with exactly
4n — 4 nonzero entries. Furthermore, we determine m x n sparse
row-orthogonal matrices.

1. Introduction

An n x n matrix A is direct summable, if the rows and columns of A
can be permuted to obtain a matrix of the form

A O
O A’

If A is an n X n orthogonal matrix, then it is easy to verify that if
A contains a zero submatrix whose dimensions sum to n, then the
submatrix complementary to it is also a zero submatrix. Hence an
n X n orthogonal matrix is direct summable if and only if there exists
an 7 X s zero submatrix of A for some positive integers r and s with
r+8s=n.

In 1991, M. Fiedler conjectured that for n > 2 an n x n orthogonal
matrix which is not direct summable has at least 4n —4 nonzero entries.
In [1], this conjecture was shown in the affirmative and moreover, the
zero patterns of the n x n orthogonal matrices with exactly 4n — 4
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nonzero entries were determined. B. L. Shader [5] gave a simpler proof
of this result, and recently this result was extended in [2] and (3].

First, we describe a few results from [1]. Recursively define a family
of (0,1)-matrices of order n > 2 as follows. Let

1 1
32_[1 1].
If n is odd, define
0
Bn-1 0
B, =
1
1
K 0 1 1]
If n is even, define
0
Bn—l
B, = 0
1
0 0 11 1
For example,
11100 rl 1 1 0 0 07
111000
11100
011110
Bs= 0 1 1 1 1 ) Bs=
011110
0 11 11
000 1 1 0 00 111
0 0 0 1 1 1.
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As noted in [1], each of the matrices B, (n > 2) is the zero pattern
of an n x n orthogonal matrix which is not direct summable and has
exactly 4n — 4 nonzero entries. In addition, the matrix

0111
1 01 1
Ra=17 1 ¢ 1
1110

is the zero pattern of a 4 x 4 orthogonal matrix which is not direct
summable and has exactly 12 nonzero entries. Theorem 2.2 of [1] asserts
that for n > 2 an n x n orthogonal matrix, ¢, which is not direct
summable has at least 4n — 4 nonzero entries, and if equality holds
then, up to permutation of rows and columns, the zero patterns of Q)
are either B, B}; or Ry for n = 4.

In this paper, we construct n x n real orthogonal matrices with the
same zero pattern as B,,. We shall use the method by basic orthogonal
matrices.

2. The construction by basic orthogonal matrices

A 2 x 2 orthogonal matrix R(6;) is a rotation if it has the form

COSOi sin0i )
R(0:) = [—sinGi cosOi] , (0 €R).

A 2 x 2 orthogonal matrix R(6;) is a reflection if it has the form

cosf; sind;
R(9:) = [sinOi _cos&] , (6 €R).

Rotations and reflections are computationally attractive because they

are easily constructed by properly choosing the rotation angles or the

reflection lines.

An n x n matrix Q; is called a basic orthogonal matriz provided Q); is
permutation equivalent to R(6;) & I,,_o for some rotation or reflection
R(6;). ~

The following theorem is useful one for us.
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THEOREM 2.1. Every n X n orthogonal matrix (n > 2) can be ex-
pressed by the product of basic orthogonal matrices.

Proof. We prove by induction on n. If n = 2 then this is a trivial.
Assume the theorem holds for n. Suppose

¢ x
Q_[YT Z]

is an (n+ 1) x (n+ 1) orthogonal matrix where Q is n x n real matrix.
Then by singular value decomposition, Q) can be witten as

Q=UxvT

where U and V' are n x n orthogonal matrices, and ¥ is n x n diagonal
matrix with nonnegative main diagonal entries d;,ds,... ,d, and the
rank of ¥ is the same as the rank of Q. Thus we get

o=[U O] = U™<][v" ©O
|0 I1:||:yTV z ][O Il:l

By induction, since U and V' can be expressed by the product of basic
orthogonal matrices U @ I; and VT @ I, are also respectively. It is
sufficient to show that

d]_ 113/1

d2 O .’E/

o [ 2 UTx] _ ; ?
=|. 7 =

yv'V oz .

dn z,

Vi Y2 o Up 2

is expressed by a product of basic orthogonal matrices. Since the
columns (rows) of @’ form an orthonormal set, it is easy to show that Q’
is a basic orthogonal matrix. Hence an induction argument completes
the proof of the theorem. O

It is useful to associate to each matrix a bipartite graph. Let Q =
(9:;) be an n x n matrix. The bipartite graph of Q is the graph with
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vertices 1,2,... ,m and 1/,2',... ,n’ which has an edge joining 7 and 7’
if and only if g;; # 0. Two vertices u and v of the graph of () are said
to be connected if there is a (u,v)-path in the graph of Q). Connection
is an equivalence relation on the vertex set V. Thus there is a partition
of V into nonempty subsets Vi, Vs,...,V,, such that two vertices u and
v are connected if and only if both u and v belong to the same set V;.
The subgraphs of @ with Vi, V,,...,V,, are called the components of
Q. Thus if @ has exactly one component then the bipartite graph of Q
is connected. It is easily verified that @ is not direct summable if and
only if the bipartite graph of @) is connected.

LEMMA 2.2. Let Q; be an nxn basic orthogonal matrix. Ifk <n-—1
then @ = (1Q2 -+ Qr has at least n — k components.

Proof. We proceed by induction on k. If k = 1 clearly ) = ¢, has

at least n — 1 components. Let

Q' =Q1Q2 - Q1.

Since Q. is a basic orthogonal matrix there exists permutation matrices
m; and 7y such that Qr = 7 (R(0;) @ I,,—2)m2 for some rotation or
reflection R(0;). Thus we get

Q= Q'Qr = Qm(R(0) ® In_2)m.

By induction, since @' has at least n — k + 1 components ()'m; is also.
Thus we may assume that

Qm=A410A4,8 - @A, k1

after column and row permutation where 4; (1 = 1,2,... ,n —k + 1)
is an orthogonal matrix with suitable size. We can also assume that
A; is orthogonal matrix which is not direct summable with the least
rank among n — k + 1 direct summands of @'m;. Hence by a simple
computation, if A; = I; then @ has at least n—k components, otherwise
Q has at least n —k +1 components. Consequently, @ has at least n—k
components. By induction the proof is completed. : O

The following is an immediate consequence of Lemma 2.2.
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COROLLARY 2.3. Let Q; be an n x n basic orthogonal matrix. If
Q= Q1Q2 - Qr is not direct summable then k > n — 1.

Let Q,, be the set of all nxn orthogonal matrices which are not direct
summable with a product of exactly n — 1 basic orthogonal matrices.

Now we are ready to construct the sparsest n x n real orthogonal
matrices which are not direct summable and are expressed by a product
of basic orthogonal matrices.

For an integer k with 1 < k < n—1, define the n x n basic orthogonal
matrix @k by

R I 4 0] 0
Qe=| O R(l) O
O (O P
where R(6x) is a rotation or a reflection, and 0 < 6x < 2w, O #
7T, %ﬂ‘.
Define

@ _ @1@3 cee Qn—1@2@4 e Q\n~2 if nis even,
nxn — o~ o~ ~ ~ o~ o~
Q1Qs  Qn20Q2Q4---Qn_1 if nisodd.

Then @nxn is a product of exactly n — 1 basic orthogonal matrices,
and has exactly one component from our definition of Q,xn. Thus

Qnxn € Qn.

THEOREM 2.4. For a positive integer n > 2, let @an be then x n
matrix defined in (1). Then Qnxr is an orthogonal matrix with exactly
4n — 4 nonzero entries which is not direct summable.

(1)

Proof. Since @an € Qn, @nxn is not direct summable. If n = 2
then Qnxn=0Q1 = R(0;). Thus the theorem holds for n = 2. Suppose
n > 3. First, for an even number n > 4 let

A=Q:1Q3--Qno1, B=0Q2Qs - Qns.

Then @nxn = AB, and A, B are block diagonal matrices with 2 x 2
and 1 x 1 blocks, i.e.,

A= diag(@l, 63) ey @n—l), B= dla'g(]-’ @2, @4’ s a@n—z, 1)'
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Now let Qnxn = [Q:;] be a block matrix with 2 x 2 blocks, and let
A = [a;;] and B = [by;]. Then by simple computations, we get

( [agi—12i-1b2i—12i-1 a2i—12:b2 2i]
| azi2i-1b2i-12i-1 az; 2ib2; 2
fi=j=12..,2
[ a2i—1 2:b2i 2i+1 0]
| agi2ib2i2iv1 O
if j=i+land i=1,2,...,% -1,

i

Qij

[0 agi—12i-1b2i—1 2i-—2]
[0 ag;2i—1b2i—12i—2

if j=i-landi=2,...,7,
0

. otherwise

where bj; = bpn, = 1. Thus it is easy to show that the number of
nonzero entries in @nxn is 4n — 4. By the similar argument, we can
also show that the number of nonzero entries in @nxn is 4n — 4 for the
case of odd number n. The proof is completed. O

Note that the zero pattern of @nxn is precisely coincide with B,. So
if we take a 0 for an integer k with 1 < k < n — 1, then we obtain a
sparse orthogonal matrices with the same zero pattern as B,,.

For example, let n = 6. Take

(3 1 00 0 0] 'L 0 0 0 0 0
0 £ ¥2 000
-1 B 0000 s
5 — A |0 - %2 0 0 0
Q1‘001000>Q2"“ )
0 0 0100 0 0 0 100
0 0 0010 6 0 0 010
0 0 00 0 1] o 0 0 0 0 1.
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f o E 0 0 0]
& E 0 0 o
o F f 81 o

o F E o E
0 0 0 g

Thus @6x6 is a 6 x 6 orthogonal matrix with exactly 4n — 4 = 20
nonzero entries which is not direct summable, and the zero pattern of
Qexs is the same as Bg.

REMARK. Let

X
X =
<]
be an s x t row-orthogonal matrix and let
T
|
v- 7]

be an k x | row-orthogonal matrix, where X is (s —1) x t and Y is
(k —1) x I. Define XQY to be the (s + k — 1) x (t + 1) matrix

X o
XY = | xT yT
O Y

Certainly, X{QY is a row-orthogonal matrix. Since the bipartite graph
of XQY is obtained from the bipartite graphs of X and Y by identifying
a vertex from each, XQOY is not direct summable if and only if both
X and Y are not direct summable. We can extend this construction

to use any number of row-orthogonal matrices by defining XQY 0Z as
(XOY)0Z.
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An m x n matrix A is direct summable if the rows and the columns
of A can be permuted to obtain a matrix of the form

A1 O

O Az’
Here, either of the matrices A; or A; may be vacuous by virtue of
having no rows or no columns. But neither A; nor As is allowed to be
the 0 x 0 matrix. We let #(A) denote the number of nonzero entries in
the matrix A.

Theorem 2.1 of [2] asserts that if A is an m xn row-orthogonal matrix
which is not direct summable, then

n+2m—2 if n>2m—2,
4m — 4 ifn<2m-2°

(2) #(4) 2 {

Furthermore, equality holds in (2) if and only if for n > 2m — 2, the
columns of A can be permuted so that

JOA0 - OA2

where J is the 1 X (n — 2m + 2) matrix of all ones and there are m — 1
Ajy’s which are 2 x 2 full orthogonal matrices, and form < n < 2m —2,
the rows and columns of A can be permuted to have the form

A OAk, O+ OAky

where ky +ko+---+kn_mi1 =n(k; > 2) and foreach:=1,2,... ,n—
m+1, Ay, is an k; x k; orthogonal matrix which is not direct summable
with #(Ag,) = 4k; — 4. '

Thus we can also determine m X n sparse row-orthogonal matrices
by use of sparse orthogonal matrices.
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