FUZZY IMPLICATIVE ALGEBRAS

YOUNG BAE JUN AND HEE SIK KIM

ABSTRACT. We introduce the notion of a fuzzy topological implicative algebras and apply some of Foster's results [2] to homomorphic images and inverse images of fuzzy topological implicative algebras.

0. Introduction

Implicative algebras are closely related to posets with the greatest element. In [4], it concerned with some properties of implicative algebras and implicative filters. The notion of fuzzy subsets was formulated by Zadeh [6] and since then fuzzy subsets have been applied to various branches of mathematics and computer science. Rosenfeld [5] inspired the development of fuzzy algebraic structures. In [3], we discussed the fuzzification of an implicative filter in an implicative algebra. The concept of a fuzzy subset provides a natural framework for generalizing many of the concepts of general topology to what might be called fuzzy topological spaces. Foster [2] combined the structure of a fuzzy topological spaces with that of a fuzzy group, introduced by Rosenfeld [5], to formulate the elements of a theory of fuzzy topological groups. In this paper, we introduce the concept of fuzzy topological implicative algebras and apply some of Foster's results [2] to homomorphic images and inverse images of fuzzy topological implicative algebras.

Received May 23, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 03G25, 54C05, 94D05.

Key words and phrases: Implicative algebra, fuzzy implicative algebra, fuzzy topological implicative algebra.

This work was supported by the BSRI program, Ministry of Education, 1997, Project No. BSRI-97-1406.

1. Preliminaries

An abstract algebra $\mathcal{X} = (X, V, \Rightarrow)$, where X is a non-empty set, V is a 0-argument operation and \Rightarrow is a two-argument operation, is said to be an *implicative algebra*, provided that the following conditions are satisfied: for all $a, b, c \in X$,

- (I) $a \Rightarrow a = V$,
- (II) if $a \Rightarrow b = V$ and $b \Rightarrow c = V$, then $a \Rightarrow c = V$,
- (III) if $a \Rightarrow b = V$ and $b \Rightarrow a = V$, then a = b,
- (IV) $a \Rightarrow V = V$.

Let $\mathcal{X} = (X, V, \Rightarrow)$ be an implicative algebra. If we define a relation "<" as follows:

$$a \le b$$
 if and only if $a \Rightarrow b = V$.

then the relation " \leq " defines a partial order on \mathcal{X} . The element V is the greatest element in the poset (A, \leq) .

We now review some fuzzy logic concepts. Let X be a non-empty set. A fuzzy subset A in X can be characterized by a membership function $\mu_A: X \to [0,1]$. For a fuzzy subset A in X and $m \in [0,1]$, the set

$$X_A^m := \{x \in X | \mu_A(x) \ge m\}$$

is called a *level subset* of A. Let f be a mapping from a set X to a set Y. Let B be a fuzzy subset in Y with membership function μ_B . The *inverse image* of B, denoted $f^{-1}(B)$, is the fuzzy subset in X with membership function $\mu_{f^{-1}(B)}(x) = \mu_B(f(x))$ for all $x \in X$. Conversely, let A be a fuzzy subset in X with membership function μ_A . Then the *image* of A, denoted by f(A), is the fuzzy subset in Y such that

$$\mu_{f(A)}(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \mu_A(z) & \text{if } f^{-1}(y) = \{x | f(x) = y\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

A fuzzy subset A in X is said to have the *sup property* if, for any subset $T \subseteq X$, there exists $t_0 \in T$ such that

$$\mu_A(t_0) = \sup_{t \in T} \, \mu_A(t).$$

Fuzzy implicative algebras

DEFINITION 1.1. A fuzzy topology on a non-empty set X is a family \mathcal{T} of fuzzy subsets in X which satisfying the following conditions:

- (i) For all $c \in [0,1]$, $k_c \in \mathcal{T}$,
- (ii) If $A, B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$,
- (iii) If $A_j \in \mathcal{T}$ for all $j \in J$, then $\bigcup_{j \in J} A_j \in \mathcal{T}$,

where k_c has a constant membership function. The pair (X, \mathcal{T}) is called a fuzzy topological space and members of \mathcal{T} are called open fuzzy subsets.

DEFINITION 1.2. Let A be a fuzzy subset in X and \mathcal{T} be a fuzzy topology on X. Then the *induced fuzzy topology* on A is the family of fuzzy subsets of A which are the intersection with A of \mathcal{T} -open fuzzy subsets in X. The induced fuzzy topology is denoted by \mathcal{T}_A , and the pair (A, \mathcal{T}_A) is called a *fuzzy subspace* of (X, \mathcal{T}) .

DEFINITION 1.3. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two fuzzy topological spaces. A mapping $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ is said to be fuzzy continuous if, for each open fuzzy subset U in \mathcal{U} , the inverse image $f^{-1}(U)$ is in \mathcal{T} . Conversely, f is said to be fuzzy open if for each open fuzzy subset V in \mathcal{T} , the image f(V) is in \mathcal{U} .

DEFINITION 1.4. Let (A, \mathcal{T}_A) and (B, \mathcal{U}_B) be fuzzy subspaces of fuzzy topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) , respectively, and let $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a mapping. Then f is also a mapping of (A, \mathcal{T}_A) into (B, \mathcal{U}_B) if $f(A) \subseteq B$. Furthermore f is relatively fuzzy continuous if for each open fuzzy set V' in \mathcal{U}_B , the intersection $f^{-1}(V') \cap A$ is in \mathcal{T}_A . Conversely, f is relatively fuzzy open if for each open fuzzy set U' in \mathcal{T}_A , the image f(U') is in \mathcal{U}_B .

LEMMA 1.5 ([2]). Let $(A, \mathcal{T}_A), (B, \mathcal{U}_B)$ be fuzzy subspaces of fuzzy topological spaces $(X, \mathcal{T}), (Y, \mathcal{U})$ respectively, and let f be a fuzzy continuous mapping of (X, \mathcal{T}) into (Y, \mathcal{U}) such that $f(A) \subseteq B$. Then f is a relatively fuzzy continuous mapping of (A, \mathcal{T}_A) into (B, \mathcal{U}_B) .

2. Fuzzy topological implicative algebrase

DEFINITION 2.1. Let $\mathcal{X} = (X, V, \Rightarrow)$ be an implicative algebra and G be a fuzzy subset in X with membership function μ_G . Then G is

said to be a fuzzy implicative algebra in \mathcal{X} if

$$\mu_G(x \Rightarrow y) - \min\{\mu_G(x), \mu_G(y)\} \ge 0$$

for all $x, y \in X$.

EXAMPLE 2.2. Let $X:=\{V,a,b,c,d\}$ be a set with the following table:

\Rightarrow	V	a	b	c	d
V	V	a	b	c	d
a	V	V	b	c	d
b	V	a	V	c	d
c	V	V	V	V	d
d	V	V	V	V	\overline{V}

Then $\mathcal{X}=(X,V,\Rightarrow)$ is an implicative algebra. Let G be a fuzzy subset in X with membership function μ_G defined by $\mu_G(V)>\mu_G(c)=\mu_G(d)>\mu_G(a)=\mu_G(b)$ is a fuzzy implicative algebra in \mathcal{X} .

PROPOSITION 2.3. Let A be a fuzzy set in an implicative algebra $\mathcal{X} = (X, V, \Rightarrow)$. Then A is a fuzzy implicative algebra in \mathcal{X} if and only if for every $m \in [0, 1]$, X_A^m is a subalgebra of \mathcal{X} , when $X_A^m \neq \emptyset$.

Proof. Let A be a fuzzy implicative algebra in \mathcal{X} . Let $m \in [0,1]$ be with $X_A^m \neq \emptyset$ If $x, y \in X_A^m$, then $\mu_A(x) \geq m$ and $\mu_A(y) \geq m$. It follows that

$$\mu_A(x \Rightarrow y) - m \ge \mu_A(x \Rightarrow y) - \min\{\mu_A(x), \mu_A(y)\} \ge 0,$$

so that $x \Rightarrow y \in X_A^m$. Hence X_A^m is a subalgebra of \mathcal{X} . Conversely, assume that X_A^m is not a subalgebra of \mathcal{X} for some $m \in [0,1]$. Then

$$\mu_A(x_0 \Rightarrow y_0) - \min\{\mu_A(x_0), \mu_A(y_0)\} < 0$$

for some $x_0, y_0 \in X$. If we take

$$m_0 := rac{1}{2}\{\min\{\mu_A(x_0),\mu_A(y_0)\} - \mu_A(x_0 \Rightarrow y_0)\},$$

then clearly $m_0 \in [0,1]$, $\mu_A(x_0 \Rightarrow y_0) < m_0$ and $\min\{\mu_A(x_0), \mu_A(y_0)\} > m_0$. Consequently, $\mu_A(x_0) > m_0$ and $\mu_A(y_0) > m_0$, i.e., $x_0, y_0 \in X_A^{m_0}$. Since $X_A^{m_0}$ is a subalgebra of \mathcal{X} , it follows that $x_0 \Rightarrow y_0 \in X_A^{m_0}$ so that $\mu_A(x_0 \Rightarrow y_0) \geq m_0$, a contradiction. Therefore A is a fuzzy implicative algebra in \mathcal{X} .

PROPOSITION 2.4. Let f be a homomorphism of an implicative algebra $\mathcal{X} = (X, V_X, \Rightarrow_X)$ into an implicative algebra $\mathcal{Y} = (Y, V_Y, \Rightarrow_Y)$ and let G be a fuzzy implicative algebra in \mathcal{Y} with membership function μ_G . Then the inverse image $f^{-1}(G)$ of G is also a fuzzy implicative algebra in \mathcal{X} .

Proof. Let $x, y \in X$. Then

$$\mu_{f^{-1}(G)}(x \Rightarrow_X y) = \mu_G(f(x \Rightarrow_X y))$$

$$= \mu_G(f(x) \Rightarrow_Y f(y))$$

$$\geq \min\{\mu_G(f(x)), \mu_G(f(y))\}$$

$$= \min\{\mu_{f^{-1}(G)}(x), \mu_{f^{-1}(G)}(y)\},$$

i.e., $\mu_{f^{-1}(G)}(x \Rightarrow_X y) - \min\{\mu_{f^{-1}(G)}(x), \mu_{f^{-1}(G)}(y)\} \ge 0$, ending the proof.

PROPOSITION 2.5. Let f be a homomorphism of an implicative algebra $\mathcal{X} = (X, V_X, \Rightarrow_X)$ onto an implicative algebra $\mathcal{Y} = (Y, V_Y, \Rightarrow_Y)$. If G is a fuzzy implicative algebra in \mathcal{X} with the sup property, then the image f(G) of G is a fuzzy implicative algebra in \mathcal{Y} .

Proof. For
$$u, v \in Y$$
, let $x_0 \in f^{-1}(u), y_0 \in f^{-1}(v)$ such that
$$\mu_G(x_0) = \sup_{t \in f^{-1}(u)} \mu_G(t), \quad \mu_G(y_0) = \sup_{t \in f^{-1}(v)} \mu_G(t).$$

Then

$$\begin{split} \mu_{f(G)}(u \Rightarrow_Y v) &= \sup_{z \in f^{-1}(u \Rightarrow_Y v)} \mu_G(z) \\ &\geq \mu_G(x_0 \Rightarrow_X y_0) \\ &\geq \min\{\mu_G(x_0), \mu_G(y_0)\} \\ &= \min\{\sup_{t \in f^{-1}(u)} \mu_G(t), \sup_{t \in f^{-1}(v)} \mu_G(t)\} \\ &= \min\{\mu_{f(G)}(u), \mu_{f(G)}(v)\}, \end{split}$$

i.e., $\mu_{f(G)}(u \Rightarrow_Y v) - \min\{\mu_{f(G)}(u), \mu_{f(G)}(v)\} \geq 0$. Hence f(G) is a fuzzy implicative algebra in \mathcal{Y} .

Let $\mathcal{X} = (X, V, \Rightarrow)$ be an implicative algebra and let $a \in X$. We denote a_r the selfmap of X defined by $a_r(x) := x \Rightarrow a$ for all $x \in X$.

DEFINITION 2.6. Let $\mathcal{X} = (X, V, \Rightarrow)$ be an implicative algebra and \mathcal{T} a fuzzy topology on X. Let G be a fuzzy implicative algebra in \mathcal{X} with induced topology \mathcal{T}_G . Then G is said to be a fuzzy topological implicative algebra in \mathcal{X} if for each $a \in X$ the mapping

$$a_r: x \mapsto x \Rightarrow a \text{ of } (G, \mathcal{T}_G) \to (G, \mathcal{T}_G)$$

is relatively fuzzy continuous.

THEOREM 2.7. Given implicative algebras $\mathcal{X} = (X, V_X, \Rightarrow_X)$, $\mathcal{Y} = (Y, V_Y, \Rightarrow_Y)$ and a homomorphism $f : \mathcal{X} \to \mathcal{Y}$, let \mathcal{U} and \mathcal{T} be the fuzzy topologies on \mathcal{Y} and \mathcal{X} respectively, such that $\mathcal{T} = f^{-1}(\mathcal{U})$. If G is a fuzzy topological implicative algebra in \mathcal{Y} , then $f^{-1}(G)$ is a fuzzy topological implicative algebra in \mathcal{X} .

Proof. We have to show that, for each $a \in X$, the mapping

$$a_r: x \mapsto x \Rightarrow_X a \text{ of } (f^{-1}(G), \mathcal{T}_{f^{-1}(G)}) \to (f^{-1}(G), \mathcal{T}_{f^{-1}(G)})$$

is relatively fuzzy continuous. Let U be an open fuzzy subset in $\mathcal{T}_{f^{-1}(G)}$ on $f^{-1}(G)$. Since f is a fuzzy continuous mapping of (X, \mathcal{T}) into (Y, \mathcal{U}) , it follows from Lemma 1.5 that f is a relatively fuzzy continuous mapping of $(f^{-1}(G), \mathcal{T}_{f^{-1}(G)})$ into (G, \mathcal{U}_G) . Note that there exists an open fuzzy subset $V \in \mathcal{U}_G$ such that $f^{-1}(V) = U$. The membership function of $a_r^{-1}(U)$ is given by

$$\mu_{a_r^{-1}(U)}(x) = \mu_U(a_r(x)) = \mu_U(x \Rightarrow_X a) = \mu_{f^{-1}(V)}(x \Rightarrow_X a) = \mu_V(f(x \Rightarrow_X a)) = \mu_V(f(x) \Rightarrow_Y f(a)).$$

Since G is a fuzzy topological implicative algebra in \mathcal{Y} , the mapping

$$b_r: y \mapsto y \Rightarrow_Y b \text{ of } (G, \mathcal{U}_G) \to (G, \mathcal{U}_G)$$

is relatively fuzzy continuous for each $b \in Y$. Hence

$$\begin{split} \mu_{a_r^{-1}(U)}(x) &= \mu_V(f(x) \Rightarrow_Y f(a)) \\ &= \mu_V(f(a)_r(f(x))) \\ &= \mu_{f(a)_r^{-1}(V)}(f(x)) \\ &= \mu_{f^{-1}(f(a)_r^{-1}(V))}(x), \end{split}$$

which implies that $a_r^{-1}(U) = f^{-1}(f(a)_r^{-1}(V))$ so that

$$a_r^{-1}(U)\cap f^{-1}(G)=f^{-1}(f(a)_r^{-1}(V))\cap f^{-1}(G)$$

is open in the induced fuzzy topology on $f^{-1}(G)$. This completes the proof.

We say that the membership function μ_G of a fuzzy implicative algebra G in an implicative algebra $\mathcal{X} = (X, V_X, \Rightarrow_X)$ is f-invariant [5] if, for all $x, y \in X$, f(x) = f(y) implies $\mu_G(x) = \mu_G(y)$.

Clearly, a homomorphic image f(G) of G is then a fuzzy implicative algebra.

THEOREM 2.8. Given implicative algebras $\mathcal{X} = (X, V_X, \Rightarrow_X)$, $\mathcal{Y} = (Y, V_Y, \Rightarrow_Y)$ and a homomorphism f of \mathcal{X} onto \mathcal{Y} , let \mathcal{T} be the fuzzy topology on \mathcal{X} and \mathcal{U} be the fuzzy topology on \mathcal{Y} such that $f(\mathcal{T}) = \mathcal{U}$, and let G be a fuzzy topological implicative algebra in \mathcal{X} . If the membership function μ_G of G is f-invariant, then f(G) is a fuzzy topological implicative algebra in \mathcal{Y} .

Proof. It is sufficient to show that the mapping

$$b_r: y \mapsto y \Rightarrow_Y b \text{ of } (f(G), \mathcal{U}_{f(G)}) \to (f(G), \mathcal{U}_{f(G)})$$

is relatively fuzzy continuous for each $b \in Y$. Note that f is relatively fuzzy open; for if $U' \in \mathcal{T}_G$, there exists $U \in \mathcal{T}$ such that $U' = U \cap G$ and by the f-invariance of μ_G ,

$$f(U') = f(U) \cap f(G) \in \mathcal{U}_{f(G)}.$$

Let V' be an open fuzzy subset in $\mathcal{U}_{f(G)}$. Since f is onto, for each $b \in Y$ there exists $a \in X$ such that b = f(a). Hence

$$\begin{split} \mu_{f^{-1}(b_r^{-1}(V'))}(x) &= \mu_{f^{-1}(f(a)_r^{-1}(V'))}(x) \\ &= \mu_{f(a)_r^{-1}(V')}(f(x)) \\ &= \mu_{V'}(f(a)_r(f(x))) \\ &= \mu_{V'}(f(x) \Rightarrow_Y f(a)) \\ &= \mu_{V'}(f(x \Rightarrow_X a)) \\ &= \mu_{f^{-1}(V')}(x \Rightarrow_X a) \\ &= \mu_{f^{-1}(V')}(a_r(x)) \\ &= \mu_{a_r^{-1}(f^{-1}(V'))}(x), \end{split}$$

which implies that $f^{-1}(b_r^{-1}(V')) = a_r^{-1}(f^{-1}(V'))$. By the hypothesis, $a_r: x \mapsto x \Rightarrow_X a$ is a relatively fuzzy continuous mapping: $(G, \mathcal{T}_G) \to (G, \mathcal{T}_G)$ and f is a relatively fuzzy continuous mapping: $(G, \mathcal{T}_G) \to (f(G), \mathcal{U}_{f(G)})$. Hence

$$f^{-1}(b_r^{-1}(V')) \cap G = a_r^{-1}(f^{-1}(V')) \cap G$$

is open in \mathcal{T}_G . Since f is relatively fuzzy open,

$$f(f^{-1}(b_r^{-1}(V')) \cap G) = b_r^{-1}(V') \cap f(G)$$

is open in $\mathcal{U}_{f(G)}$. This completes the proof.

ACKNOWLEDGEMENTS. The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

References

P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.

^[2] D. H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979), 549-564.

^[3] Y. B. Jun and H. S. Kim, Fuzzy implicative filters in implicative algebras, J. Fuzzy Math., to appear.

Fuzzy implicative algebras

- [4] H. Rasiowa, An algebraic approach to non-classical logics, American Elsevier Publishing Co. Inc., New York, 1974.
- [5] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [6] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

Young Bae Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea *E-mail*: ybjun@nongae.gsnu.ac.kr

HEE SIK KIM, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr