Bull. Korean Math. Soc. 36 (1999), No. 1, pp. 47-61

ON POLY-EULERIAN NUMBERS
JIN-W00 SoN AND MIN-So0 Kim

ABSTRACT. In this paper we define poly-Euler numbers which gen-
eralize ordinary Euler numbers. We construct a p-adic poly-Euler
measure by the poly-Euler polynomials and derive an integral for-
mula.

1. Introduction

In the case of Euler number, we consider the coefficients of the ex-

pansion of ==+ +1 and —— cosht

o0

eflt = Z — and €F cosht Z k

k=0

where the symbols Hy and Ej are interpreted to mean that H*(resp.
E*) must be replaced by Hy(resp. Ek) when we expand the one on the
left. Here we see that Ey = (2H + 1)*.

The recurrence formula for the Euler numbers has the form (E +
1)"+(E-1)"=0, Ey = 1. Thus, Es,41 = 0, the Ey, are positive and
E4ny9 are negative integers for all n = 0,1,---;

Ey=—1, Ey=5, Eg= —61, Es = 1385, Ejp = —50521.

The Euler numbers are connected with the Bernoulli numbers. The
Euler numbers are used in the summation of series.
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The generalized k-th Euler number Hj(u) was studied by Frobe-
nius (1910): for real algebraic u,

(o 0]
(1) l-u = AWt — Z HL(U.)_tm.

el —u m!

m=0

Thus we have the relation
Ho(uw) =1, (H(u)+1)F —uHi(u)=0 (k>1).

Consequently,
k

uHi(w) =Y <];>H (u) and Hi(u) = ——Z( ) (W),
7=0 for u # 1.

In this paper, we define poly-Euler numbers which generalize ordi-
nary Euler numbers by Frobenius. We construct a p-adic poly-Euler
measure by the poly-Euler polynomials and derive an important in-
tegral formula. In section 2, we define a sequence of the numbers
HP (n = 0,1,2,---), which we say poly-Euler numbers and we give
an explicit formula for Hy, (%) in the real case. We prove the distribution
relation for the poly-Euler polynomials. In section 3, the poly-Euler
polynomials constructed in section 2 can be seen to be a p-adic poly-
Euler measure. We obtain the poly-Euler numbers by using the integral
formulas. In section 4, we study some properties of ordinary Euler num-
bers by Frobenius.

ACKNOWLEDGEMENT. The authors would like to express sincere
gratitude to professor Masanobu Kaneko at Kyushu University for his
valuable discussion and his paper [1]. Also we would like to give our
thanks to Dr. Taekyun Kim in Kyungpook National University.

2. Poly-Eulerian numbers

First we introduce the k-th polylogarithm defined by

X _m
. z
Lig(z) = —
m=1 m
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for k>1, |2| <11).
For parameter u with v € R and u > 1, we have

) 1— 6(1 —u)\ym
sz( (1 u) Z ( )

fork > 1.

Thus

gmqu—éhm)

_ Z m(1 — 6(1 W)™ L -

m=1
e(l—uw) i (1 _e(l—u))m
T1-el-w m—l mF—1
1
— i — e(1—1)
= e—(l—u) — 1le_1(1 € )

Hence Lix(1 — e®=%), k > 2 can be written in the form of iterated
integrals:

Lig(1 — 179

" 1
— ; — e(1-1)
= [ e—(1~—t) — 1le_1(1 € )dt

u 1 t 1
= ; — 1)
- /1 e—(1-t) _ 1 /1 e—(1-t) _ lek—2(1 € )dt di

e 1 ¢ 1 ¢ f1
:/1 e—(l—t.)_l/1 .g—(l—t)__l"‘/1 e(l—r,)_—Idtdt - dt.

(k—1)—times

Now, we define the poly- Buler number H (k)( ) as

1 —e(l-w) 0
(2) LZk(u eew =S HP W)= =W fork > 1.
n=0
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By comparing the coefficients of Taylor expansion on both side, we
know that

(H®(u) + 1)» = uHF)(w) for Vn > 1,

_ Lik(l - e(l‘“))
- u—1 '

(3)

HE® (u)

The left hand side of (2) can be written as

1 u 1 t 1 L . |
u—e”ﬂ/l e—(l—t)—l/l e‘(l“)—l.“/l e‘(l"t)—ldtdt”'dt

~ 7

(k—1)~—times
o wn
4 =Y HEF ()=,
(4 IO

where u is a real number with v > 1.
‘Also we define poly-Euler polynomials as

iy A0y = N g (g g1 o
u_ethk(l—e )=nZ=0Hn (u,x)g
Then we have
(5) (H®(u) + 2)" = H® (u;z), Yn >0,k > 1.

For n > 0, k > 1, we can write poly-Euler polynomials as

H® (u; z) = i (’l‘) H® (w)zmL,

=0

If k¥ = 1, then H,(,l)(u) := Hp(u) is the ordinary Euler number by
Frobenius.

The Stirling numbers of the second kind S(n,m) (n >0, 0 < m < n)
is defined by the formula

n

(6) z" = Z S(n,m)(x)m,

m=0
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where (z), = z(x —1)---
the Stirling numbers of the second kind satisfies the following formulas
(when n = 0, the identity 0° = 1 is understood):

On poly-Eulerian numbers

(x—n-i—l), ((II)Oz

1. By simple calculation,

)™ & (m n
S(n,m) = ( — Z (l>(—1)ll
T =0
and
(1-u) _
(7) (i___l_ Z S(n, m) )
where 1 < u < 2.
By (7)
Lig(1 — e(l_u))
u— et
_ 1 o (1 _ e(l—u))m+1
_u—e“”";o (m + 1)k
— 1 o (_1)m+1 (1—u) m+1
_u—-ezg;:o(m+1)k(e -1
1 i (—1)™*t (m + 1)} (e — )™ H!
T u—e® — (m+ 1) (m+ 1)!
1 X (-)"Tm+1) &
= S(n,m
1w K —w)l T 1( 1erl (m +1)!
—u_eng—.; n! Z (m+ 1)k

Hence we have the following:

PROPOSITION 1.
o0
H (u) = —Hq(
=1
forn>0,Vk2>1

(1—w)'! §~ (D™ m+ D

m=0
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COROLLARY 1. Fork > 1,

(m+ 1)k

Lig(1 - e(l—u)) — {Z(_l)l( 1) Z (- 1)m+1(m + 1)'S(l,m +1).
I=1

By (4), we see that

Lik(l — e(l_u)) oot

et
sz(l —e(l- “)) uf—e (z_-m)fthk(l —e(l-u ))
u sz(l —ell- “f)) uf — eft
sz(l —ell- “)) uf—e SHW (ufi252) 1t
u — Lix(1 —e(- uf)) '
Hence
o (k)
(:t 1 Z) ym
= m!
| Lig(1 — e=%) fz‘:l uf=o i B 252) fmym
- u = Lix(1 - el-uf)) £« m! ’

Therefore we obtain the following:

PROPOSITION 2. For f > 1, we have

o uf~e k) (o

n H .

f G‘Z:O LZk(l _ 6(1__uf)) n (u )
u

sz(l — e(l-w)

r+a

)

- H®) (u; )

for allk > 1.

The above proposition is important for the construction of the p-adic
poly-Euler measure in the next section.
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3. Properties of poly-Eulerian numbers in p-adic case

Throughout this paper Z,, Q, and C, will respectively denote the
ring of p-adic rational integers, the field of p-adic rational numbers and
the completion of the algebraic closure of Q.

Let f be a fixed positive integer, and let p be a fixed prime number.
We denote

— T N
N
(8) x*= U a+fpzy
0<a<fp
pta

a+prZp={x€X|an (mod fp™)},

where 0 < a < fpV.
Without loss of generality, we may assume that u € C, satisfies
11 —ufP"|, > 1.

REMARK. If |[1-u/P"|, > 1, then |Lik(1*e(1““fpn))|p > 1 due to the
basic property of a non-Archimedean field that |[z+y|, = max{|z|p, |y|p}
if |zlp # lylp ([4], [9))-

Let a € Z with 0 < a < fp® — 1, n > 0. Then p-adic poly-Euler
measure is defined by

E}Sﬁgy HOR m(a‘ + fanP)
(9) ufP"—a a
- (P HP (w7
Lig(1 — e(1-ul?")) fp

PROPOSITION 3 (Poly-Euler measure). Form >0, k > 1, E;gy -
is measure on X.

Proof. At frist, we show that E®

poly,u;m

that, it suffices to check that ([4], p. 35)

is a distribution on X. For

k . n
Z B\ e+ ifp™ + fp"1Z,)
1=0

k n
= Eg(wgy ;U m(a + fp ZP)
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The left hand side is equal to

p=l  fpt —a—ifp”

ntlym pr(k) [, fp . _‘lﬂ)
ZLik(l—e(1~"f""+l))(fp )" H ( © o fprtt

=0
mz ufp (fZi ) H(k) (( fo" )p fP T )
< Lix(1 ——e(l (ufP™)P)y P

ufP" n a
—a nym — H(k) ( fp : )
(fp ) LZk(l _ e(l—ufp )) m u —fp"
k n
= Ez()ogy RS m(a + fp ZP)'

Next, by definition of H(k)(u' z) and the condition |Lix(1— e(l_“fpn))h,
> 1 it is easy to show that |ES%) (a + fp"Zy)|p < C for some

poly;u;m
constant C. Since every compact-open set U is a finite disjoint union of
intervals a + fp"Zp, Ez(,gy u;m(U) is measure. O

COROLLARY 2. Form >0 and k=1,
fp"—a
1 n U m n a
E;’o%y u; m(a’ +fp ZP) = wir —1 (fpn) Hy, (ufp ) '}'Z')‘,:)
is measure on X. This is another generalized p-adic Euler measures.

REMARK. We denote Epoy;0 as

1
(10) Epoly;u = E;(w)ly,u 0°

Thus we obtain the p-adic Euler measure Epoy; for f =1 ([2], [6], [7]).
This measure yields an integral

p"-1 uP" -
m
a" Eoly: = lim Za
/Z poly,u( ) n—oo 1—u 1— P’

P

and the formula above can be written as

/ a" Epoly,u(a) = 1%Hm(u) for m > 0.
Zyp u
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DEFINITION 1. Let x be a primitive Dirichlet character with con-
ductor f. For n > 0, k > 1, we define generalized poly-Euler numbers
attached with primitive character x as follows:

(11) HP) (u f"Zuf y(a) HP <uf ;)

REMARK. An alternative description of the generalized poly-Euler

number is
f n l
HEw) =33 amul = a)< ) HO () (5) .

a=1 (=0

In particular, if x = 1, then H( ) =30 (7 )H(k) (u).
We can express the poly-Euler numbers as an integral over X by

using the measure F (ogy - that is,
(k)
X(@Z)E, o nm (T
A ) poly;u; ( )
fp"-1 *®
= nll)l’lgo ( )Epoly u; m(a + fanP)
a=0
Sl fp"—a
u n a
= I - nym (k) [, fp e
A X X0 g ey UP D (o7 £

li mf—l —a/,n P (uf) P &), fo" %+i
= lim f Zx(a)u ()™ Zsz(l—e(l w7y Hoe ( ; )

f
m ~a U k) [,f. @
= H
=/ ZX Lip(1 — e(t=uh) ( f)

a=0
T~ a
= f_aH(k) f. -
Lix(1 — e0-u9) ;X(“)“ m (“ ’ f)
(k)
mx(¥) if x#1.

T Lig(1 — 0-uD)
We have the following:
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ProprosITION 4. Form > 1,

(k)
/)‘( X(x)Epoly;u;m uH(k)(u)

Lix(1—eli-w)

H®) (u) .
(z) = Lig(1—-e(1-uv")) #x#1,
if x=1.

THEOREM 1. Let f : X — X be the function f(z) = ™, m is a
fixed positive integer. Then for all compact open U C X,

/1E§;2y;u;m(x)=/ proly;u(-'L'),
U U :

where Epopy;, be the p-adic Euler measure on X in (10).

Proof. From (4) and with u = u/?",z = +Z;, we obtain

and

By using this equation and (5), (10), we have

fp"—a A
k n _ Uu m k n
B0+ 10°2) = oy Ho (07" (mod )
m ufpn_a n
=a ) (mod p™)

= a™ Epoty;u(a + fp"Zp) (mod p™).
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Hence

fp"-1
/ (ﬁgy K'Y m(m) hm Z EPOI%" m(a + fan )

a=0
fp"—-1

= lim a™ Epory.u(a + fp"Zy) (mod p™)
0

n—o0o

=/ f Epoty;u()
U

Thus we have the assertion. O

Let w denote the Teichmiiller character mod p (if p = 2, mod 4)
([8]). For z € X*, we set (r) = oG- Note that (z)® is defined by

exp(slog,(z)), for |s|, < 1 since |(x) — 1|, < p~1/(p=1),
We define an interpolation function for poly-Euler numbers.

DEFINITION 2. For s € Zj,

s = [ (@) X@e ™ Eyun(a).

THEOREM 2. For m > 0, we have

HO W p™x(p) ®) ()
Lik(l—e<1—“f)) Lik(l—e(l—“fp)) m,X
m if 1,
E;k)(u; —m, W) = uH)((ka) P uP (k)
Lin(1-e0-9) ~ Lix(1—e(- uP)) m’ (uP)
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Proof. We show that

) (u; —m, xw™)

poly,u;m

- / (o) x(@)w™ (@) E),  (2)
X

[ @ x(@™(@ Bpaya(z)

X

/ X(w)mepoly;u(x)
X

- /X X(@)E™ Epotyu () — / X(@)" gyl
/X(w)$mEpoly;u($)_/ X(px)(px)mEpoly;u(Px)
X X
/ X(@)EE), () — / X PX@)EE), (@),
X X

By Proposition 4, we get the result. U

4. Some properties of Euler numbers

In (1), the m-th Euler number H,(u) attached to an algebraic num-
ber |u| < 1 is defined by the generating function on an indeterminate
t

1-u _ ‘@t _ 3 Hm(4) m

t !
u m.:
€ m=0

Set .
2m (n—1)m "z‘: k™

1
Sm(n;u) = E+E§-+"'+—un—_1— =k—1F
for u # 0,1. We will prove that Euler numbers are connected with the

sums of series of Sy, (n;u).
LEMMA 1. For any rational integer m,n > 1

(n+ H(u))™ CHo(u) = 1—u

Sm{n;u).

un

58



On poly-Eulerian numbers

Proof. We consider the equation

u—-ne(n+H(u))t _ eH(u)t — eH(u)t(u—nent _ 1)

n—1 r 00
1-— 1 P
vy (;) S
r=0 m=0 '
1 —u" tm
= Sm(mi)

On the other hand,

o0
—m (n+H(xu n+ H(u))™ "™ 1-—u"
ue(ntHENt _ (H(uw)t 2 ' <(_._n(i_ - m(u)) — 1+ .

— u un
Hence
o0 o0
(n+ H(u))™ tm 1-u N
> (R Hal)) = 3 S St
which proves the lemma. O
By Lemma 1, for k£ > 1 we have
mo_k k k
(12) :z:_xz 1u ((m-i-frfn(u)) “‘Hk(u))+_m-
—u —u u
The equation (12) implies
k
3) DT LA
z=1y=1 u
u n+ H(u
(13) = (( +1) ((___(L - Hk(u))
(n + H(u))k+? k
—_ (_—_'Jn—-—— —Hk+1(1.t) ’u,—"
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Also we have
(14)

¥ L3 (2 (B - mw) + )

r=1y=1 z( ., )2 ((n+H(u)+H(u))k_(H(u)+H(U))k>

1—u un

2u (n+ H(u))k u nk
1-u un _l—u(n+2)Hk(u)+u"'

Using (13) and (14)

k k+1
ST ETTE TR
(15) u n u))k
- (R EOE (1) + )).
We consider the coefficient for n in (15). Then since
™ = ¥20 S (log u)’,

— k(Hg-1(u) + Hx(u)) + (Hx(u) + Het1(u)) logu

GO = % k(i) + H@) " — (H(w) + H(w)* logu).

Therefore we obtain the following theorem.

THEOREM 3. For any rational integer k > 1

Zk( )Hk _j-1(w)H;(u Zlogu( >Hk (W) Hj(u)

1=

(Hr(uw) — Hg-1(u)) + log u(Hi+1(w) + Hi(u))).

REMARK. We know that the n-th Bernoulli number B} belonging to
a Dirichlet character x can be expressed with (n — 1)-th Euler numbers

([6))-
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