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INEQUALITIES FOR THE AREA OF
CONSTANT RELATIVE BREADTH CURVES

YonG IL KiMm AND Y. D. CHAI

ABSTRACT. We obtain an efficient upper bound of the area of convex
curves of constant relative breadth in the Minkowski plane. The
estimation is given in terms of the Minkowski arc length of pedal
curve of original curve.

1. Introduction

Bodies of constant breadth are of general interest ({1}, [2], [4], [5], [6],
(7], 19], [10], {11], [13]). Many mathematicians have studied geometric
inequalities for convex bodies ([3], {4], [5], [8]). Chakerian and Groemer
([10]), Gruber and Wills ([12]), and Santalé ([15]) are good references in
this line.

In this paper, we use the concept of a pedal curve and obtain a
Minkowski arc length element for non-convex closed plane curve in the
Minkowski plane to calculate an upper bound of the area of constant
relative breadth curves and obtain an inequality for the area of a curve
C of constant relative breadth in the Minkowski plane:

wL*(P)

mim2, ,
A3, (5t ) LAD)
where P is a pedal curve of C and A is the Euclidean area and L is the
Minkowski arc length and L. is the Euclidean arclength and m and M are

A(C) < 24(P) —
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minimal and maximal values of the radial function of the isoperimetrix
I and « is the angle function of contact points to C.

The equality holds if and only if C is homothetic to a pedal curve of
the isoperimetriz.

2. Preliminaries

Let C be a closed plane curve with O in its interior. If O bisects each
chord of C through O, then we say that O is a center of C. Let U be a
centrally symmetric closed convex curve with center at the origin O of the
Euclidean plane R%. We shall assume throughout that U is smooth and
has positive finite curvature everywhere. Then a usual metric d on R?
defines a Minkowski metric m using the formula m(z,y) = %, where
d(z,y) is the Euclidean distance from z to y, and r(z,y) is the radius of
U in the direction of a vector £ — y. The set of points of R? together
with metric m is the Minkowski plane, denoted by M?2. Certainly U is
the unit circle in M? and it shall be referred to as the indicatrix. Let
7(6) = p~1(6), where r(8) is the radial function of U in the direction 6.
Then the function p(@) is the support function of a closed convex curve I
called the isoperimetrix. In fact, the curve I is the polar reciprocal of U,
with respect to the Euclidean unit circle, rotated through deg 90 ([3]).

Now we have the following definition for the Minkowski breadth.

DEFINITION 1. Let C be a closed convex curve in the Minkowski plane
M?. Then the relative breadth w(#) in the direction 6 is the distance
between two parallel lines of support to C which are perpendicular to
the direction # and which contain C between them. C is of constant
relative breadth if its relative breadth is independent of the direction.

The relative breadth of a closed convex curve C in a given direction 4
is %?’L—"), where h(f) and p(6) are the support functions of C and U,
respectively. Thus all the homotheties wU of U are curves of constant rel-
ative breadth 2w. The authors consider an example of non-trivial curves

of constant relative breadth in [14].
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3. The dual Minkowski plane M2*

Following Chakerian [8], we parametrize U by twice its sectorial area,
0, and write the equation of U as

(1) t=1t(6),—m <8 <m,m(t)=m(t,0) =1
Then the trace of n(f) defined by n(d) = %9 7 < § < 7, is the

isoperimetrix I. Let G be a line parallel to the direction ¢(8) in (1).
Then the equation of G can be given by the formula:

(2) |[t(6), X]| = P,

where [ X, Y| = z1y; — 2211 for X = (z1,25),Y = (y1,72) and | - | denotes
the absolute value of the number. We shall denote the line G by G =
G(P,9). In fact, [X, JY] is equivalent to (X, Y’) where J is rotation by
and (,) is the Euclidean dot product. The authors investigate geometry
of the number P in [4].

THEOREM 1. Let G(P,6) be a line given by the equation (2). Then
the point Pn() lies on the line G(P,6) and P is the Minkowski distance

in the new Minkowski plane with the indicatrix I from the origin to the
line G(P,0).

Proof. See [4]. O

In Theorem 1 we define the new Minkowski plane with the isoperimetrix
I as its indicatrix. We call this new plane the dual plane of the original
Minkowski plane and denote it by M?*. Also we call the distance m* on
M?" the dual distance. We shall denote the relative breadth in M2 by
Br*(C,8).

Now we consider some properties of curves of constant relative breadth
in the new Minkowski plane M?".

THEOREM 2. Let C be a plane curve of constant relative breadth
Br*(C,0) = w in M?*. Then
2
A(C) + A(C, —C) = %T,

where —C is a curve obtained by rotating C through deg 180 and A(,)
denotes the mixed area.

Proof. See [14]. d
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4. A constant relative breadth curve

Let C be a differentiable closed convex curve with the origin in its
interior. For the direction #, —m < 8 < 7, let h(f) be the support function
of C. That is, h(f) is the distance of the origin from the tangent of C at
the point ¢(¢) where the exterior normal of C has direction 6. It is well
known that the Euclidean line element of C at ¢(6) is (h(8) + h"(8))d9.
Assume 6; < 6;. Then the line through ¢(6;) and perpendicular to
the direction 6, must meet the different point of C from ¢(6,). Thus
q(61) # q(62).

Conversely, assume that 8; = 6, for different two points ¢(6;), g(6,)
on C. Then the line segment ¢(6;)q(6;) is contained in C. This is a
contradiction to the fact that C is differentiable. Consequently, we have

that the function q : 8 — ¢(8),6 € [—, 7] is a one-to-one correspondence.
Thus the Minkowski length L(C) of C is

®) L) = [ (h(0) + W80+ Tyas

s

If C is not convex, then we cannot use the equation (3) for the Minkowski
length of a closed curve because the function ¢ above is not one-to-one.
The notion of a pedal curve was introduced by C. Maclaurin.

DEFINITION 2. For a simple closed plane convex curve C' with the
origin O in its interior, the curve P whose radial function is equal to the
support function of C is called a pedal curve of C.

L. Xiao-hua showed the following lemma.

LEMMA 1. If f and g are positive real valued functions and %+% =1,
p,g>0and0<m< 5 < M hold, then

</f)(/g) < e (1) [ 4

1 1 —t)tw
Ap,q(t)z 1 1 (1 1 ) L 1
PPO* (1~ 13)’ (1 - 1))

Proof. See [16] a

o e

where

Qb
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With notations T for a pedal curve of the isoperimetrix I and T for
the area enclosed by I, we have our main result in the following:

THEOREM 3. IfC is a differentiable curve of constant relative breadth
w in M?" and P is a pedal curve of C, then

nL*(P)

2,12 *
43, (7 ) LD

(4) A(C) <24(P) -

The equality holds if and only if C is homothetic to I

COROLLARY 1. Let C be a curve of constant breadth w in the Eu-
clidean plane and P be a pedal curve of C, then

Li(P)
47TA%’2 (%) ’

where L, is the Euclidean arc length. The equality holds if and only if
C is a circle.

(5) A(C) < 24(P) —

Proof. In the Euclidean plane, L.(I) = 27 and p = 1. Thus we have
the inequality (5) immediately from the theorem above.

Secondly, in the case C is a circle we have P = C' and my = My = 1.
Since Aga(t) = 2(1+ Vi)ti, we get Ayp(1) = 1. Thus A(C) = 24(P) —
—LE%;);—). This completes the proof. O

47rA§’2 d

e,
o

5. Proof of Theorem 3

Note that pedal curve P is not convex in general. Thus we use

/z2(0) + 2%(8)d6 as the Euclidean arclength element of P at z(6), where
z(6) is the radial function of P. Then \/z2(8) + z'%(8) = 1/h2(8) + K*(6)

is the Euclidean length of Og(6). Let a(f) be the angle of Og(6) from
the line # = 0 and extend the function. «a to the function a : (—00, c0) —
(—00,00) by the equation (6 + 2kn) = () + 2km, where k is an inte-
ger. Since C is differentiable the function « : 6 — a() from (—o0, ) to
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(—00, 00) is an increasing one-to-one correspondence. Thus the Minkowski

arc length element of P at z(6) is y/22(0) + 2/*(0)p o a(8)df. Thus

L(P) = /_ \/22(8) + 2(6)p o (6)df
= /_: \/ h2(8) + R2(8)p o (8)df

Now by using Buniakowsky-Schwarz inequality, ([ f 9)2 < (AU,
we have

(6) / " \/ h2(6) + R3(8)p o (8)dB

< \/ /_ " 1R2(6) + 2 (9)}d0 [ " (poa)(0)d

Thus

L(P)

< \/B / ﬂ{h2(0)+h’2(9)}d9

- \/E\/uﬂ / "(2(0) + p2(8)}dB + 2A(C, —C) — 4 / " h(O)h(8 + )db,
0 0

where B = [" (po @)?(8)d6. Because C is of constant relative breadth
w in M?*, we have

T w2 T 1 T 9
/0 hOO+m)ds = = /0 P(0)d — 5 /_ RAQLE

= f;T — A(P).
Thus by Theorem 2
(7) L(P) < v/2B(2A(P) — A(C)).

Let M and m be maximal and minimal radius of I, respectively. Then
trivially m < po a(f) < M for all € [—m,7]. We can compute that
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q(8) = (h(6) cos§ — k' (0) sin 6, h(0) sin 6 + k'(6) cos §). Thus the equation
of the line through O and ¢(9) is

(8) (h(8)sinf + h'(8) cosO)z + (k' (9)sind — h(8) cosf)y = 0.

Thus (h(8) cos 8 —h/(0) sin 6)tan(a(6)) = h(8) sin §+h'(8) cos § for a(8) #
5 + km, where k is an integer. Thus

() — MO + 1(6))
R2(6) + K%(6)

for a(f) # § 4 km. Since C has no line segment, h + k" is continuous.
Extend o' to the domain where a(f) = § + kn by the equation

(o (i) < S o (5 00).

Then o is continuous on R. Thus ¢ has its maximal value M, and
minimal value my on [—=,7]. Thus

By Lemma 1 we have

\/ [ woar@ras [ @yoas

< Ay (A"Z”Ajg > /_ :(po a)(6)d (6)d8

m2mg/
== A2’2 (M2—]\43,) Le(I)

Using Schwarz Inequality we have 4/ f_" (a’)2(0 df > +/2mw. Thus

\// (0o a)’(6)do < e <37’T;’)L (I)

V2r

Consequently we get
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This yields the inequality (4).
Now we prove the second part of our theorem. The equality holds in

(6) if and only if {/h2(8) + h*(8) is proportional to poc(8). But the trace

of poa(h) is a pedal curve I of the isoperimetrix . We may assume that
a support line [ to C at a point ¢(#) on C is perpendicular to the direction
6 at a point ¢’ on I. Then d(O, ¢') = h(0) and d(q(8),q’) = |h'(8)|. Thus

d(0, q(8)) = \/h%(8) + K*(6). Since C is a differentiable curve, g(¢) has a
unique 8 modulo 27 associated with it and # makes a complete circuit. If

we set y(0) = d(O, g(8)) = 1/h2(8) + K'*(8), then y(0) is also an equation
of C. This completes the proof. D
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