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CONTROLLABILITY OF SECOND _ORDER SEMILINEAR
VOLTERRA INTEGRODIFFERENTIAL SYSTEMS
IN BANACH SPACES

K. BALACHANDRAN, J. Y. PARK AND S. MARSHAL ANTHONI

ABSTRACT. Sufficient conditions for controllability of semilinear sec-
ond order Volterra integrodifferential systems in Banach spaces are .
established using the theory of strongly continuous cosine families.
The results are obtained by using the Schauder fixed point theorem.
An example is provided to illustrate the theory.

1. Introduction

Controllability of linear and nonlinear systems represented by ordi-
nary differential equations in finite dimensional space has been exten-
sively studied. Several authors have extended the concept to infinite di-
mensional systems in Banach Spaces with bounded operators. Lasiecka
and Triggiani [4] have studied the exact controllability of abstract semi-
linear equations. Naito {7,8] has studied the controllability for semilin-
ear systems and nonlinear Volterra integrodifferential systems. Quinn
and Carmichael [10] have shown that the controllability problem in Ba-
nach spaces can be converted into one of a fixed-point problem for a
single-valued mapping. Balachandran et al [1] established sufficient con-
ditions for controllability of nonlinear integrodifferential systems in Ba-
nach spaces.

In many cases it is advantageous to treat the second order abstract
differential equations directly rather than to convert them to first order
systems. A useful tool for the study of abstract second order equations
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is the theory of strongly continuous cosine families. We will make use
of some of the basic ideas from cosine family theory and the theory
of fractional powers [11,12,2]. Motivation for second order systems can
be found in [3,5,6]. Because of its importance recently Park et al.[9]
have discussed the controllability of second order nonlinear systems in
Banach spaces with the help of Schauder‘s fixed point theorem. The
purpose of this paper is to study the controllability of semilinear second
order Volterra integrodifferential systems in Banach spaces by using the
Schauder fixed point theorem.

2. Preliminaries

We consider the abstract semilinear second order control system

Z'(t) = Az(t)+ /tg(t, s, z(s))ds + Bu(t), teJ=1[0,T],
0

(1) z(0) = =, 2(0)=uw,

where the state z(.) takes values in the Banach space X, zo,y0 € X, A is
the infinitesimal generator of the strongly continuous cosine family C(t),
t € R, of bounded linear operators in X, ¢ is a nonlinear unbounded
mapping from J x J x X to X, B is a bounded linear operator from U
to X and the control function u(.) is given in L?(J,U), a Banach space
of admissible control functions, with U as a Banach space.

DEFINITION 1. [13] A one parameter family C(t), t € R, of bounded
linear operators in the Banach space X is called a strongly continuous
cosine family iff

(i) C(s+1t)+C(s —t) =2C(s)C(t) forall 5,t € R;

(i) C(0) = I

(iii) C(t)z is continuous in t on R for each fixed z € X.

We define the associated sine family S(t), t € R, by

¢
S(t)z = / C(s)zds, ze X, teR.
0
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We make the following assumption on A.

(H1) A is the infinitesimal generator of a strongly continuous cosine
family C(t), t € R, of bounded linear operators from X into itself.

The infinitesimal generator of a strongly continuous cosine family C(¢),
t € R, is the operator A : X — X defined by

a?
Az = —C(t)e z € D(A),

?

where
D(A) = { z € X: C(t)z is twice continuously differentiable in ¢ } .

We define
E = { z € X: C(t)z is once continuously differentiable in ¢ } .

LEMMA 2. [13] Let (H;) hold. Then
(i) there exist constants M > 1 and w > 0 such that
ICOI € Me and ||S(t)|| < Me“™ fort e R;
(i) S¢)X CE and S(t)EC D(A) forteR;
(i) %C(t)x — AS(t)c for s € E and t€ R;
a?
(iv) @C(t)x = AC(t)z for z € D(A) and t€ R.

It is proved in [2] that for 0 < & < 1 the fractional powers (—A)*
exist as closed linear operators in X, D((—A)*) c D((-A)P) for
0<B<a<l, and (—A)*(-A4) =(-A)** for 0<a+pB<1.

We assume in addition

(Hp) for0< o<1, (—A)* maps onto X and is 1-1, so that D((—A)®)
is a Banach space when endowed with the norm ||z||, = ||(—A4)%z|],
z € D((—A)*). We denote this Banach space by X,. We further
assume that A~! is compact.
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We require the following lemmas.

LeEMMA 3. [13] Suppose (H;) hold. Then the following are true.
(i) For 0 < a < 1, (~A)™* is compact iff A~! is compact,
(i) for0<a<landte R, (=A)°C(t)=C(t)(—A)™

and (—A™)S(t) = S(t)(—A4)™.

LEMMA 4. [13] Let (H;) hold, let v: R — X such that v is contin-
¢
uously differentiable and let ¢(t) = / S(t — s)v(s)ds. Then
0

(i) q is twice continuously differentiable and for t € R,

at) € D(A), ¢() = / C(t - syo(s)ds,

and
¢
(1) = / Ot~ sy/(s)ds + C(t)v(0) = Aq(t) +v(t);
0
(ii) for0<a<1landté€R, (—=A)*1¢(t) € E.
We make the following assumptions:

(H3) g:J x Jx D(A) — X is continuous where D(A) is an open
subspace of X, for some « €[0,1);

(Hy) ¢1:J xJ x D(A) — X is continuous where g; denotes the
derivative of g with respect to its first variable;

(Hs) Bu is continuously differentiable and Bu(0)=0;
(Hs) The linear operator W : L2(J,U) — X defined by
Wu = /T S(T — s)Bu(s)ds
has a bounded inv;)rtible operator W1 : X — L2(J,U)/kerW.
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For the system (1), a mild solution can be written as (see [13])

z(t) = C(t)zo + S(t)yo + /OtS(t - s) /Os 9(s, 7, z(7))drds
(2) +/O S(t — s)Bu(s)ds.

DEFINITION 5. The system (1) is said to be controllable on J = [0, T
if for every z9,2; € D(A) and yp € E there exists a control u € L*(J,U)
such that the solution z(.) of (1) satisfies z(T") = z;.

3. Main result

THEOREM. Suppose (H,)-(He) hold. Then the system (1) is control-
lable on J.

Proof. Using the assumption (He), for an arbitrary function z(.) we
define the control

T s
u(t) = Wz, ~ C(T)ao ~ S(T)yo — / S(T - s) / 9(s, 7, 2(7))drds|(t).
0 0
Using this control we shall now show that the operator defined by
t s ’
(Gz)(t) = C(t)zo+ S(t)yo + / S(t— s)/ 9(s, T, z(1))drds
0 0
t
+ / S(t - ) BW"[z1 — C(T)a0 — S(T)ye
’ T 9
- / S(T — 9)/ 9(0,7,2(7))drdb)(s)ds, teJ
0 0

has a fixed point. This fixed point is then a solution of the equation

2). O
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Clearly, (Gz)(T) = z1, which means that the control u steers the
system from the initial state zy to z; in time T, provided we obtain a
fixed point of the nonlinear operator G.

For 7y >0, let Ny(zo) = {z € X, : ||lzo — z|| <7}

Let ¢(t) = C(t)zo + S(t)yo. Then ¢ : R — X, is continuous. Now
choose v >0 and 7" > 0 such that

(3) N,(zo) € D(A);

for s,7 € [0,T] and = € N,(xo),

(4) lgts,m2) <1 and  [lgi(s, 7 2)[| < 15
for t € [0, T,
(5) l(2) = Zolla <7/2;

for t € [0,T] and z9, z3, T4, T5 € N,(20),

H(—A)ﬂ*{ [ otszis = [ o= ) (o(5,5,2
(6) + /08 g1(s, T, z4)dr)ds + BW [z, — C(T)zo — S(T)yo
T 0
- / S(T — 0)/ 9(8, 7, z5)drdb|(t)
0 0

- [ cte= 9B e - O~ ST

<7/2.

T 9
—/0 S(T—O)/O g(G,T,xs)d'rdG](s))ds}

Let K be a closed bounded convex subset of Z = C([0,T] : X,) with

6
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norm ||.||z, defined by

K={zeZ:|z—-¢ll <v/2}
Notice that for ¢ € K and t € [0, T, z(t) € D(A),

since [|2(¢) — Zolla < [z = bllz +[|¢(2) — Zolla < v/2+7/2.

Define the transformation G on K by

t)+ /OtS(t —5) /OS g(s, T, z(1))drds

/t S(t — s)BW [z, — C(T)zo — S(T)yo
/ S(T - ) / 9(8,7, 2(r))drdo](s)ds, € J.

Using (Hs) and (6) we see that for t € (0,77,

H(G2)(®) — ¢(t)lla
= (—A)"‘l{/o 9t s,2(s))ds

- /Ot C(t — s)(g(s, s, z(s)) + /Os a91(s, 7, z(1))dr)ds
+ BW! [:c - ¢(T) — /T S(T - 6) /09 g(G,T,:E(T))deH] (t)
/ Clt—s ( 2 BW -1z, — §(T)

— /0 (T - 9)/ (8,1, z(7))drdb|(s )> ds}

< v/2.
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Further Gz is continuous as a function from [0, T] to X,. Thus G maps

K into K.
We next show that G is continuous. By (H3) and (Hy), given € >0 there
exists a ¢ >0 such that for z;,z; € K, ||z1 — 2|z < § and s € [0, T}, we

have

sup "9(57 7, :1}1(7')) - g(S, T, .'1,‘2(7'))” <€

0<r<T

sup ”91(3’ 7, 1171(’7')) - gl(S’T1 12(7—))“ <e€

0<r<T

Thus for z1,z9 € K and t € [0, T},

1(Gz)(®) = (Gz)E)le
ll { (g(t, s,21(8)) — 9(t, 5, 72(s)))ds
- [ = 9ats, 29 — g(s,5, 229

- /t Clt =) /3(91(3 7,21(7)) = g1(s, T, T2(7)))drds
W [ / S(T -9) / 9(0,7,2:(7)) — 9(0, 7, :EQ(T)))deH] t)

/Ct—s< BW“[/ST 6)

/ (98,7, z:(7)) — 9(0, T, mz(T)))drdH] (s)) ds}

0

< Ne

for some constant N > 0 and the continuity of G follows immediately.
We next show that the set {Gz : z € K} is equicontinuous as a collection
of functions in Z.
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Forre Kand0<t<t*<T,

1(Gz)(®) — (Gz)()lla

< I(CtH) = CEN(=Aaall + AS(E) - SE))(~ Aol
“ / —8) = Ol = 5))(=A)y(g(5, 5, 2(5))

+ /osg (s,7,z(7))dT)ds
¥ n(—Ar**‘uH / (Ol = 5)(g(5,5,2(9)
+ /OS a1(s, 7,z(7))dT)ds

N ”(_A)a—lu{ /Ot At‘ g1(7, s, z(s))drds||+ /tt‘ g(t*,s,w(S))dsH}
+ ”(_ A)"‘“‘{BW“I [x1 - &(T)

- /0 "S- /0 "o, x(T))dee] ®)

- 8w - o) - [ “sw-o) [ 0,7, woiras] )

wiar i [ -9 - ot - 9) (ZEw o - om)

- /0 ' S(T - ) /0 ’ 96,7, :L‘(T))dee] (s)) ds
il [t - 9 5w m - o)
- /0 sT—9) /0 o, x(T))dee] (s)ds,l—-a 0.

as |t — t*| — 0 uniformly for z € K,

by virtue of (4),(Hs), the fact that (—A)>~! is compact from X to X and
the fact that C(t) is uniformly continuous in finite ¢-intervals on compact

9
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subsets of X. Thus the set {Gz : z € K} is equicontinuous.

Finally, we show that for each fixed t € [0, T}, the set {(Gz)(t) : z € K}
is precompact in X,. Since (—A4)™?: X — X, is compact where a < £,
it suffices to show that {(—A)™?(Gz — ¢)(t) : z € K} is bounded in X
fora< g <1.

By (H,) we have

I(~AP(Cz - $)®)]
< ”(—A)f’-l | (ote,s,a(s))as

0

+ H(—A)ﬂ—1 /0 Ot - 5)(g(s, 5,a(8)) + /0 " 015, o(r))dr)ds
w1 W e - s

- /0 -9 /0 " o6, z(T))deo] (t)”
/0 Ot —s) (dist-l [xl _ (1)

_ /OT S(T - 6) / 98,7, x(T))deO] (s)) ds

—+

}

By Schauder’s fixed point theorem, G has a fixed point in K. Any fixed
point of G is a mild solution of (1) on J satisfying (Gz)(t) = z(t) € D(A).
Thus the system (1) is controllable on J.

o
0
and the boundedness follows from (4).

4. Example
Consider the integro-partial differential system

t
wy,t) = 2(y,t) + / olt, s, 2(y, s)ds + uy, 1),
0

(7)  2(0,t) = z(mt)=0,
z(y,0) = 2z(y), 2(y,0) = z1(y), O<y<m teld

10
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Let 0 : J x J x (0,7) — (0,7) be continuous and also continuously
differentiable with respect to its first variable. Let p1: (0,7) x J — (0, 7)
be continuous and continuously differentiable with respect to its second
variable and u(y,0) = 0.

Let X = L*(0,7) and let A : X — X be defined by

Aw=wvw", we D(A),

where D(A) ={w € X : w,w’ are absolutely continuous, w” € X, w(0)=
w(m)=0}. Then

Aw = Z —n(w, w)w,, w € D(A),
n=1

where w,(s) = /2/msinns, n = 1,2,3,- - -is the orthogonal set of eigen-
values of A.

It is easily shown that A is the infinitesimal generator of a strongly con-
tinuous cosine family C(t), ¢t € R, in X given by

o0
E cosnt(w, wp)w,, w € X,

n=1
and that the associated sine family is given by

o0
S(tyw = Z %sin nt(w, w,)w,, weX.

n=1

If we choose a = 3, then A satisfies (Hy), since

2

A)V2y an wy)wy,  w € D((—A)V?) = X,,
n=1

and

oo

(=A)w = "(1/n)(w, waw,, weE X.

n=1

The compactness of A~! follows from Lemma 3, and the fact that the
eigenvalues of (—A) 2 are \, =1/n,n=1,2,---

11
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Letg:JxeX%ﬂXbedeﬁnedby

9(t,s,w)(y) = o(t,s,w(y)), weXy, yelon],
and let Bu: J D U — X be defined by
(Bu(®))(y) = u(y, 1), ye€ (0,m).

By Reference [10], we assume that there exists a bounded invertible op-
erator W=1(\) in L2(J,U)/kerW such that

Wu = /O " S(T - 5)Bu(s)ds.

With this choice of A, g and B, (1) is the abstract formulation of (7).
Further all the conditions of the above theorem are satisfied. Hence the
system (7) is controllable on J.

REMARK. Further examples with W : L}(J,U) — X such that W~!
exists and is bounded are discussed in [10].
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